4.1 The Kernel Map

The innermost layer of DES is the "kernel map"

$$f: \mathbb{F}_2^{32} \times \mathbb{F}_2^{48} \longrightarrow \mathbb{F}_2^{32},$$

that takes 32 text bits and 48 key bits as input. First some of the 32 text bits are repeated, blowing them up to 48 bits. This "expansion map"

$$E: \mathbb{F}_2^{32} \longrightarrow \mathbb{F}_2^{48}$$

is given by the following table:

3	2	1	2	3	4	5
	4	5	6	7	8	9
	8	9	10	11	12	13
1	2	13	14	15	16	17
1	6	17	18	19	20	21
2	0	21	22	23	24	25
2	4	25	26	27	28	29
2	8	29	30	31	32	1

The correct interpretation of this table is

$$E(b_1b_2...b_{32}) = b_{32}b_1b_2b_3...b_{31}b_{32}b_1.$$

The expanded 48 bits and the 48 bit partial key are added (as binary vectors). The resulting 48 bits are divided into 8 groups each consisting of 6 bits. These groups are fed into the S-boxes 1 to 8:

$$S_j \colon \mathbb{F}_2^6 \longrightarrow \mathbb{F}_2^4 \quad (j = 1, \dots, 8).$$

The description of the S-boxes is in the next section.

The S-boxes together make up the substitution

$$S: \mathbb{F}_2^{48} \longrightarrow \mathbb{F}_2^{32}.$$

Finally we apply the "P-box" (permutation)

$$P: \mathbb{F}_2^{32} \longrightarrow \mathbb{F}_2^{32}$$

that is given by the following table meaning

 $P(b_1b_2...b_{32}) = b_{16}b_7...b_4b_{25}.$

16	7	20	21	29	12	28	17
1	15	23	26	5	18	31	10
2	8	24	14	32	27	3	9
19	13	30	6	22	11	4	25

