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7 Lucifer

History and Relevance

Lucifer was the first published bitblock cipher. Horst Feistel at IBM
developed it around 1970. It is in fact a Feistel cipher, and is a predecessor
of the standard cipher DES that was developed shortly after. Compared with
DES Lucifer seems stronger at first sight, but has some decisive weaknesses
that became apparent in the meantime.

Here we describe the variant that is called “Lucifer II” because
of its publication date in 1975. First published (1973 in Scientific
American) was a somewhat di↵erent variant called “Lucifer I”.

These are the characteristics of Lucifer (compare the figures below):

• 128-bit key. This is a large enough key space even for today’s require-
ments.

• 128-bit blocks. This is also considered su�cent down to the present
day.

• For processing the 128-bit blocks (of keys and texts) are divided into
16 bytes. (From a historic point of we should say “octets” instead of
“bytes” since in early computers a byte not necessarily consisted of
exactly 8 bits.)

• The Feistel scheme consists of 16 rounds.

• In each round the 8 bytes of the right half Ri of a block (= 64 Bits)
are processed quasi in parallel. In other words, every round processes
8 blocks à 1 byte, each one independently from the other ones.

• Each of the rounds consists of a substitution and a permutation. In
between some key bits are added (XORed).

• Nonlinearity enters the algorithm only by the substitution. The newly
added key bits are processed in a linear way in the actual round, but
then are input to the nonlinear substitution of the next round.

• The substitution of a byte starts with a decomposition into two halves
à 4 bit each of which is separately transformed by a substitution

S0, S1 : F4
2 �! F4

2.

S0 and S1 are fixed substitutions used during the whole encryption
process. Only the assignement of S0 and S1 to the 4-bit halves varies
depending on a certain key bit. It is common use to call such non-
linear BOOLEean maps “S-boxes” when they occur as even more
elementary building blocks of a kernel map.
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The algorithm is very well suited for an implementation in hardware,
in particular for 8-bit architectures. It is not so e�cient in software for its
many bit permutations.

Composing the kernel map of many small (identical or similar) S-boxes
is a way followed often also today. A rule of thumb: the smaller the S-boxes,
the more rounds are needed to achieve security.

The presentation of the algorithm follows the paper

• Arthur Sorkin: Lucifer, a cryptographic algorithm. Cryptologia 8
(1984), 22–41.

The Key Schedule

Denote the 16 bytes of the key k 2 F128
2 by

k = (k0, . . . , k15) 2 (F8
2)

16

(IBM order but beginning with 0). Round i involves the selection

↵i(k) = (↵ij(k))0j7 of 8 bytes ↵ij(k) = k7i+j�8 mod 16.

This formula looks complicated but describes a quite simple selection
scheme:

Round Position
0 1 2 3 4 5 6 7

1 0 1 2 3 4 5 6 7
2 7 8 9 10 11 12 13 14
3 14 15 0 1 2 3 4 5
4 5 6 7 8 9 10 11 12
5 12 13 14 15 0 1 2 3
6 3 4 5 6 7 8 9 10
7 10 11 12 13 14 15 0 1
8 1 2 3 4 5 6 7 8
9 8 9 10 11 12 13 14 15
10 15 0 1 2 3 4 5 6
11 6 7 8 9 10 11 12 13
12 13 14 15 0 1 2 3 4
13 4 5 6 7 8 9 10 11
14 11 12 13 14 15 0 1 2
15 2 3 4 5 6 7 8 9
16 9 10 11 12 13 14 15 0

With each new round the selection is cyclically shifted by 7 positions.
Note that each byte occurs at each position exactly once. The position de-
fines to which byte of the actual 64-bit blocks the actual key byte applies.
Furthermore the byte ↵i0(k) in position 0 serves as “transformation control
byte”.
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The Round Map

In round i the input, that is the right 64-bit part of the actual block, is
divided into eight bytes

r = (r0, . . . , r7).

L R

64 64

r0 r1 r2 r3 r4 r5 r6 r7

8 8 8 8 8 8 8 8

Byte number j is transformed as follows by this round:

r0j

?

�
?

?P
�
?

?
Sx ?

S1�x

rjl00j

-

↵ij(k)

�

Here l00j is a fixed selection of eight bits from the left part of the actual block.
The transformation control byte

↵i1(k) = (b0, . . . , b7)

is taken from right to left, and x = b7�j .
The definition of the kernel map f is clear from this picture. The explicit

formula is not quite compact, therefore we omit it.

The S-Boxes

The S-boxes
S0, S1 : F4

2 �! F4
2

are given by their value tables. Here the 4-bit blocks are written in hexadec-
imal notation, for example 1011 = B.
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x = 0 1 2 3 4 5 6 7 8 9 A B C D E F
S0(x) = C F 7 A E D B 0 2 6 3 1 9 4 5 8

x = 0 1 2 3 4 5 6 7 8 9 A B C D E F
S1(x) = 7 2 E 9 3 B 0 4 C D 1 A 6 F 8 5

The Permutations

The permutation P permutes the bits of a byte as follows:

P : F8
2 �! F8

2,

(z0, z1, z2, z3, z4, z5, z6, z7) 7! (z2, z5, z4, z0, z3, z1, z7, z6).

The bitwise addition of the left half to the transformed right half follows
a permutation whose description is: Divide the left half of the actual block
into eight bytes:

L = (l0, l1, l2, l3, l4, l5, l6, l7).

Rotate these cyclically after each step. Then for rj they are in the positions

(l00, . . . , l
0
7) = (lj , . . . , l7+j mod 8).

Finally construct the byte l00j as

l00j = (Bit 0 of l07,Bit 1 of l06,Bit 2 of l02, . . .)

etc. in the order (7, 6, 2, 1, 5, 0, 3, 4), and add it to rj .


