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2.5 Feistel Networks

Horst Feistel was the first (in the open world) who explicitly applied Shan-
non’s design principles when he constructed the Lucifer ciphers.

The Kernel Map

Assume the blocksize is even: n = 2s. Decompose blocks a ∈ Fn
2 into their

left and right halves:
a = (L,R) ∈ Fs

2 × Fs
2

(We use uppercase letters to avoid confusion with the dimension l of the
keyspace.) Moreover we have to agree on the order of the bits in a block:

• The natural order has the LSB (Least Significant Bit) always at the
right end and assigns it the index 0, the MSB (Most Significant Bit)
at the left end with index n− 1:

b = (bn−1, . . . , b0) ∈ Fn
2 .

This corresponds to the base 2 representation of natural numbers in
the integer interval [0 . . . 2n[:

bn−1 · 2n−1 + · · ·+ b1 · 2 + b0 ∈ N

This is the order we use in most situations.

• The IBM order has the bits in reverse (LSB at left, MSB at right)
and assigns them the indices 1 to n:

a = (a1, . . . , an) ∈ Fn
2 .

This corresponds to the usual indexing of the components of a vector.
Sometimes, in exceptional cases, the indices 0 to n− 1 are used.

The elemantery building blocks of a Feistel cipher are represented by
a kernel map

f : Fs
2 × Fq

2 −→ Fs
2,

that need not fulfill any further formal requirements. In particular we don’t
require that the f(•, k) be bijective.

However to get a useful cipher we should choose a kernel map
f that already provides good confusion and diffusion. It should
consist of a composition of substitutions and transpositions and
be highly nonlinear.
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Description of the Rounds

A Feistel cipher consists or r rounds. Each round uses a q-bit round key
that is derived from the key k ∈ Fl

2 by a process called the key schedule:

αi : Fl
2 −→ Fq

2 for i = 1, . . . , r.

Then round i has this form:

Li−1 Ri−1 ∈ Fs
2 × Fs

2

k ∈ Fl
2

f(Ri−1,αi(k))

�
(XOR, bitwise addition)
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We recognize the autokey principle in form of the addition of the left
half and the transformed right half of a bitblock.

Algorithmic Description

From the graphical description we easily derive an algorithmic description:

Input −→ a = (a0, a1) ∈ Fs
2 × Fs

2

a2 := a0 + f(a1,α1(k))
– 1st round, result (a1, a2)

...
...

ai+1 := ai−1 + f(ai,αi(k))
– i-th round, result (ai, ai+1)
– [ai = Ri−1 = Li, ai+1 = Ri]

...
...

Output ←− c = (ar, ar+1) =: F (a, k)

Decryption

The decryption is done by the formula

ai−1 = ai+1 + f(ai,αi(k)) for i = 1, . . . , r.

This boils down to the same algorithm, but the rounds in reverse order. Or
in other words: The key schedule follows the reverse direction.

In particular we proved:
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Theorem 3 (Feistel) Let F : F2s
2 ×Fl

2 −→ F2s
2 be the block cipher with ker-

nel map f : Fs
2×Fq

2 −→ Fs
2 and key schedule α = (α1, . . . ,αr), αi : Fl

2 −→ Fq
2.

Then the encryption function F (•, k) : F2s
2 −→ F2s

2 is bijective for every

key k ∈ Fl
2.

Addendum. Decryption follows the same algorithm with the same ker-

nel map f but the reverse key schedule (αr, . . . ,α1).

Note When the deryption starts with c = (ar, ar+1), then as a first step
the two halves must be swapped because the algorithm starts with
(ar+1, ar). To simplify this, in the last round of a Feistel cipher the
interchange of L and R is usually dropped.

Remarks

• If f and the αi are linear so is F .

• Usually the αi are only selections, hence as maps projections
Fl
2 −→ Fq

2.

• Other graphical descriptions of the Feistel scheme are:
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b) a twisted ladder
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Generalizations

1. Replace the group (Fs
2,+) by an arbitrary group (G, ∗). Then the

formulas for encryption and decryption are:

ai+1 = ai−1 ∗ f(ai,αi(k))),

ai−1 = ai+1 ∗ f(ai,αi(k)))
−1

.
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2. Unbalanced Feistel ciphers (Schneier/Kelsey): Divide the
blocks into two different halves: Fn

2 = Fs
2 × Ft

2, x = (λ(x), ρ(x)).
Then the encryption formula is:

Li = ρ(Li−1, Ri−1) ∈ Fs
2,

Ri = λ(Li−1, Ri−1) + f(Li,αi(k))) ∈ Ft
2.

Examples

1. Lucifer II (Feistel 1971, published in 1975),

2. DES (Coppersmith et al. for IBM in 1974, published as US
standard in 1977),

3. many newer bitblock ciphers.

The usefulness of Feistel networks relies on the empirical observations:

• By the repeated execution through several rounds the “(s, q)-bit secu-
rity” (or “local security”) of the kernel map f is expanded to “(n, l)-bit
security” (or “global security”) of the complete Feistel cipher F .

• The complete cipher is composed of manageable pieces that may be
“locally” optimized for security.

Luby/Rackoff underpinned the first of these observations by a theo-
retical result: A Feistel cipher with at least four rounds is not efficiently
distinguishable from a random permutation, if its kernel map is random. This
means that by Feistel’s construction a map with good random properties
but too small block length expands to a map with good random properties
and sufficient block length.

Michael Luby, Charles Rackoff: How to construct pseudoran-
dom permutations from pseudorandom functions. SIAM Journal
on Computing 17 (1988), 373–386

Two words of caution about the Luby/Rackoff result:

• It doesn’t say anything about an attack with known or chosen plain-
text.

• It holds for true random kernel maps. However concrete Feistel ci-
phers usually restrict the possible kernel maps to a subset defined by
a choice of 2q keys.


