2 Examples of Multiple Ciphers

Examples of Groups

Each of the following length preserving ciphers forms a group:

- The shift ciphers over Σ with respect to a group structure on Σ
- The monoalphabetic substitutions over Σ
- The Bellaso ciphers with a fixed period
- The block transpositions of a fixed length

DES

DES is a block cipher on \mathbb{F}_{2}^{64} with keyspace \mathbb{F}_{2}^{56}. Campbell and Wiener in (Crypto 92) proved that DES generates the alternating group of order 2^{64}. Shortly before Coppersmith had shown that the group order is at least 10^{277}. Only much later someone noted that Moore and Simmons in Crypto 86 had published the lengths of several cycles that would have sufficed to show that DES is not a group - a fact that for several years was viewed as an open conjecture.

Historical Examples

The composition of a polyalphabetic cipher of period l and another one of period q has period $\operatorname{lcm}(l, q)$. Application: Key generating machines as mentioned in Part I, see the web page http://www.staff.uni-mainz.de /pommeren/Cryptology/Classic/4_Cylinder/LongPeriods.html.

Another historical example: the double columnar transposition that is considerably stronger than the simple columnar transposition.

Composition of Bellaso Cipher

The composition of two Bellaso ciphers of periods l and q has period $\operatorname{lcm}(l, q)$, essentially the product $l q$. However its security amounts at most to the sum $l+q$ in view of an attack with known plaintext:

Assume known plaintext of length $l+q$ (over the alphabet $\mathbb{Z} / n \mathbb{Z}$). This yields $l+q$ linear equations for $l+q$ unknows - the characters of the two keys. Assume that $l<q$. Then the situation is

Plaintext	a_{0}	a_{1}	\ldots	a_{l-1}	a_{l}	\ldots	a_{q-1}	\ldots
Key 1	h_{0}	h_{1}	\ldots	h_{l-1}	h_{0}	\ldots	\ldots	\ldots
Key 2	k_{0}	k_{1}	\ldots	k_{l-1}	k_{l}	\ldots	k_{q-1}	\ldots
Ciphertext	c_{0}	c_{1}	\ldots	c_{l-1}	c_{l}	\ldots	c_{q-1}	\ldots

Taken together this is a Bellaso cipher with key

$$
\left(h_{0}+k_{0}, h_{1}+k_{1}, \ldots\right)
$$

and period $\operatorname{lcm}(l, q)$.
Let the known plaintext be $\left(a_{0}, \ldots, a_{l+q-1}\right)$. Then the system of linear equations for the $l+q$ unknowns $h_{0}, \ldots, h_{l-1}, k_{0}, \ldots, k_{q-1} \in \mathbb{Z} / n \mathbb{Z}$ is:

$$
\begin{aligned}
h_{0}+k_{0} & =c_{0}-a_{0}, \\
h_{1}+k_{1} & =c_{1}-a_{1}, \\
& \vdots \\
h_{l-1}+k_{l-1} & =c_{l-1}-a_{l-1}, \\
h_{0}+k_{l} & =c_{l}-a_{l}, \\
& \vdots \\
h_{l+q-1 \bmod l}+k_{l+q-1 \bmod q} & =c_{l+q-1}-a_{l+q-1} .
\end{aligned}
$$

This cannot have a unique solution: If we add a fixed value x to all h_{i}, and subtract x from all k_{j}, then we get another solution. Therefore for simplicity we may assume $h_{0}=0$. If the keys are not randomly chosen but built from keywords, then a simple "CAESAR exhaustion" will reveal the "true" keys later. For decryption the shifted keys are equivalent. And since we eliminated one unknown quantity, in general even $l+q-1$ known plaintext letters are enough for uniquely solving the remaining $l+q-1$ equations. We won't go into the details but give an exercise for interested readers.

Exercise

Consider the ciphertext

```
CIFRX KSYCI IDJZP TINUV GGKBD CWWBF CGWBC UXSNJ LJFMC
LQAZV TRLFK CPGYK MRUHO UZCIM NEOPP LK
```

For an attack with known plaintext assume that

- the plaintext (is in German and) starts with "Sehr geehrter ..." (a common beginning of a letter)
- some keylengths are already ruled out by trial \& error; the actual lengths to test for a double Belaso cipher are $42=6 \times 7$.
(A coincidence analysis, even if it doesn't give enough confidence in a definite period, should suffice to exclude all but a few combinations of possible keylengths.)

