2 Examples of Multiple Ciphers

Examples of Groups

Each of the following length preserving ciphers forms a group:

- The shift ciphers over Σ with respect to a group structure on Σ
- The monoal phabetic substitutions over Σ
- The Bellaso ciphers with a fixed period
- The block transpositions of a fixed length

DES

DES is a block cipher on \mathbb{F}_2^{64} with keyspace \mathbb{F}_2^{56} . CAMPBELL and WIENER in (CRYPTO 92) proved that DES generates the alternating group of order 2^{64} . Shortly before COPPERSMITH had shown that the group order is at least 10^{277} . Only much later someone noted that MOORE and SIMMONS in CRYPTO 86 had published the lengths of several cycles that would have sufficed to show that DES is not a group—a fact that for several years was viewed as an open conjecture.

Historical Examples

The composition of a polyalphabetic cipher of period l and another one of period q has period lcm(l, q). Application: Key generating machines as mentioned in Part I, see the web page http://www.staff.uni-mainz.de/pommeren/Cryptology/Classic/4_Cylinder/LongPeriods.html.

Another historical example: the double columnar transposition that is considerably stronger than the simple columnar transposition.

Composition of Bellaso Cipher

The composition of two BELLASO ciphers of periods l and q has period lcm(l,q), essentially the product lq. However its security amounts at most to the sum l + q in view of an attack with known plaintext:

Assume known plaintext of length l + q (over the alphabet $\mathbb{Z}/n\mathbb{Z}$). This yields l + q linear equations for l + q unknows—the characters of the two keys. Assume that l < q. Then the situation is

Plaintext	a_0	a_1	 a_{l-1}	a_l	 a_{q-1}	
Key 1	h_0	h_1	 h_{l-1}	h_0	 	
Key 2	k_0	k_1	 k_{l-1}	k_l	 k_{q-1}	
Ciphertext	c_0	c_1	 c_{l-1}	c_l	 c_{q-1}	

Taken together this is a BELLASO cipher with key

$$(h_0 + k_0, h_1 + k_1, \ldots)$$

and period lcm(l,q).

Let the known plaintext be (a_0, \ldots, a_{l+q-1}) . Then the system of linear equations for the l + q unknowns $h_0, \ldots, h_{l-1}, k_0, \ldots, k_{q-1} \in \mathbb{Z}/n\mathbb{Z}$ is:

$$\begin{array}{rcl} h_0 + k_0 &=& c_0 - a_0, \\ h_1 + k_1 &=& c_1 - a_1, \\ &\vdots \\ h_{l-1} + k_{l-1} &=& c_{l-1} - a_{l-1}, \\ h_0 + k_l &=& c_l - a_l, \\ &\vdots \\ h_{l+q-1 \bmod l} + k_{l+q-1 \bmod q} &=& c_{l+q-1} - a_{l+q-1}. \end{array}$$

This cannot have a unique solution: If we add a fixed value x to all h_i , and subtract x from all k_j , then we get another solution. Therefore for simplicity we may assume $h_0 = 0$. If the keys are not randomly chosen but built from keywords, then a simple "CAESAR exhaustion" will reveal the "true" keys later. For decryption the shifted keys are equivalent. And since we eliminated one unknown quantity, in general even l + q - 1 known plaintext letters are enough for uniquely solving the remaining l + q - 1 equations. We won't go into the details but give an exercise for interested readers.

Exercise

Consider the ciphertext

CIFRX KSYCI IDJZP TINUV GGKBD CWWBF CGWBC UXSNJ LJFMC LQAZV TRLFK CPGYK MRUHO UZCIM NEOPP LK

For an attack with known plaintext assume that

- the plaintext (is in German and) starts with "Sehr geehrter ..." (a common beginning of a letter)
- some keylengths are already ruled out by trial & error; the actual lengths to test for a double BELASO cipher are $42 = 6 \times 7$.

(A coincidence analysis, even if it doesn't give enough confidence in a definite period, should suffice to exclude all but a few combinations of possible keylengths.)