B. 1 Probabilistic Boolean Circuits

A Boolean circuit describes an algorithm in the form of a flow chart that connects the single bit operations, see Appendix C. 12 of Part II. It has two supplemental generalizations:
a probabilistic circuit formalizes probabilistic algorithms,
a family of circuits allows to express the complexity of an algorithm for increasing input sizes.

First we formalize the concept of a probabilistic algorithm for computing a map

$$
f: A \longrightarrow \mathbb{F}_{2}^{s}
$$

on a set A. To this end we consider maps (to be represented by circuits)

$$
C: A \times \Omega \longrightarrow \mathbb{F}_{2}^{s}
$$

where Ω is a probability space. We look at the probabilities that C "computes" $f(x)$ or f :

$$
\begin{gathered}
P(\{\omega \mid C(x, \omega)=f(x)\}) \quad(\text { "locally" at } x) \text { and } \\
P(\{(x, \omega) \mid C(x, \omega)=f(x)\}) \quad(\text { "globally") }
\end{gathered}
$$

that we want to be "significantly" $>\frac{1}{2^{s}}$, the probability of hitting a value in \mathbb{F}_{2}^{s} by pure chance. In the local case we average over Ω for fixed x, in the global case we average also over $x \in A$. In general we assume that the probability spaces Ω and $A \times \Omega$ are finite and (in most cases) uniformly distributed.

In order to describe probabilistic algorithms we need circuits with three different types of input nodes:

- r deterministic input nodes that are seeded by an input tuple $x \in \mathbb{F}_{2}^{r}$, or x from a subset $A \subseteq \mathbb{F}_{2}^{r}$,
- some constant input nodes, each a priori set to 0 or 1 ,
- k probabilistic input nodes that are seeded by an element ("event") of the LAPLACEan probability space $\Omega=\mathbb{F}_{2}^{k}$ (corresponding to k "coin tosses"), or by an element of a subset $\Omega \subseteq \mathbb{F}_{2}^{k}$. -Sometimes also other probability distributions on Ω, different from the uniform distribution, might be taken into account.

The theory aims at statements on the probabilities of the output values $y \in \mathbb{F}_{2}^{s}$.

Examples

1. Searching a quadratic non-residue for an n bit prime module p. Here we choose a random $b \in[1 \ldots p-1]$ and compute $\left(\frac{b}{p}\right)$ (the LEGENDRE symbol that is 1 for quadratic residues, -1 for quadratic non-residues). The success probability is $\frac{1}{2}$, the cost $\mathrm{O}\left(n^{2}\right)$ (see Appendix A.8.
More generally we ask whether an h-tuple

$$
\left(b_{1}, \ldots, b_{h}\right) \in \Omega=[1 \ldots p-1]^{h}
$$

of independently choosen elements contains a quadratic non-residue. There is a probabilistic circuit (for the given p) without deterministic input nodes (but with some constant input nodes to input p),

$$
\begin{gathered}
C: \mathbb{F}_{2}^{h n} \longrightarrow \mathbb{F}_{2}^{n} \\
C(\omega)= \begin{cases}b_{i}, & \text { the first } b_{i} \text { that is a quadratic non-residue } \\
0 & \text { if none of the } b_{i} \text { is a quadratic non-residue }\end{cases}
\end{gathered}
$$

of size $\mathrm{O}\left(h n^{2}\right)$ that outputs a quadratic non-residue with probability $1-\frac{1}{2^{h}}$. Note the deviation of this example from the definition above: Here C doesn't compute an explicitly given function f but provides output with a certain property.
2. The strong pseudoprime test: Here the input is taken from the set $A \subseteq\left[3 \ldots 2^{n}-1\right]$ of odd integers. We want to compute the primality indicator function

$$
f: A \longrightarrow \mathbb{F}_{2}, \quad f(m)= \begin{cases}1 & \text { if } m \text { is composite } \\ 0 & \text { if } m \text { is prime }\end{cases}
$$

The probabilistic input consists of a base $a \in \Omega=\left[2 \ldots 2^{n}-1\right]$. The strong pseudoprime test is represented by a circuit

$$
C: \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}
$$

of size $\mathrm{O}\left(n^{3}\right)$, and yields the result 1 if m fails (then m is proven to be composite), 0 if m passes (then m is possibly prime). Thus C outputs the correct result only with a certain probability.

Now we formalize the property of a (probabilistic) circuit C of computing the correct value of $f(x) \in \mathbb{F}_{2}^{s}$ with a probability that "significantly" differs from a random guess: Given $\varepsilon \geq 0$, a circuit

$$
C: \mathbb{F}_{2}^{r} \times \Omega \longrightarrow \mathbb{F}_{2}^{s}
$$

(with r deterministic input nodes) has an ε-advantage for the computation of $f(x)$ or f if

$$
\begin{gathered}
P(\{\omega \in \Omega \mid C(x, \omega)=f(x)\}) \geq \frac{1}{2^{s}}+\varepsilon \quad(\text { "local case") or } \\
P(\{(x, \omega) \in A \times \Omega \mid C(x, \omega)=f(x)\}) \geq \frac{1}{2^{s}}+\varepsilon \quad(\text { "global case"). }
\end{gathered}
$$

Thus in the global case the probability with respect to ω of getting a correct result is additionally averaged over $x \in A$. The advantage 0 , or the probability $\frac{1}{2^{s}}$, corresponds to randomly guessing the result.
C has an error probability δ for computing $f(x)$ or f if

$$
\begin{gathered}
P(\{\omega \in \Omega \mid C(x, \omega)=f(x)\}) \geq 1-\delta \text { or } \\
P(\{(x, \omega) \in A \times \Omega \mid C(x, \omega)=f(x)\}) \geq 1-\delta .
\end{gathered}
$$

Examples

1. For searching a quadratic non-residue $\bmod p$ we have

$$
P(\{\omega \in \Omega \mid C(\omega) \text { is a quadratic non-residue }\})=1-\frac{1}{2^{h}}
$$

Thus the circuit has an $\left(\frac{1}{2}-\frac{1}{2^{h}}\right)$-advantage and an error probability of $\frac{1}{2^{h}}$.
2. For the strong pseudoprime test we have for fixed m

$$
P(\{\omega \in \Omega \mid C(m, \omega)=f(m)\}) \begin{cases}\geq \frac{3}{4} & \text { if } m \text { is composite, } \\ =1 & \text { if } m \text { is prime }\end{cases}
$$

Averaging over m we get

$$
P\left(\{(m, \omega) \in A \times \Omega \mid C(m, \omega)=f(m\}) \geq \frac{3}{4}\right.
$$

hence an $\frac{1}{4}$-advantage and an error probability of $\frac{1}{4}$. (Since the number of composite integers is much larger than the number of primes, the value $\frac{1}{4}$ is not significantly changed by averaging over m.)

