
Cryptology Part III: Asymmetric Ciphers

Klaus Pommerening
Fachbereich Mathematik

der Johannes-Gutenberg-Universität
Saarstraße 21

D-55099 Mainz

November 27, 2000—English version: January 13, 2016
last change: March 5, 2021



Asymmetric encryption introduces a new idea into cryptography that
makes a fundamental difference with the formerly treated classic or bitblock
ciphers:

Encryption and decryption are significantly different processes.
Who knows the encryption function (including its key) has no
means to efficiently derive the decryption function (or key).

The derivation of the decryption function from the encryption function is
a “one-way” process. As an everyday analog think of a postbox: Who can
insert letters in it is not able to get something out of the box, except when
she has the key. In this situation for every participant there exists a pair of
functions. The first part of this pair is the encryption function—represented
by a parameter called “public key”—and is publically available and usable
by everyone. The second part is the decryption function—represented by a
“private key”—and is a personal secret shared by no one else.

The existence of a strictly personal secret has further interesting appli-
cations:

• secure proof of identity (“strong authentication”),

• digital signature.

The latter is simply the reverse application of private and public keys:

• No one except the owner can encrypt with his private key.

• Everyone can decrypt with the public key, and in this way convince
herself without any doubt that the author and the content of the mes-
sage are authentic.

Historical notes:

• Invented by Diffie/Hellman in 1976 (in the public science).

• Best known algorithm: RSA 1978.

• Invented by James Ellis (British secret service CESG) in 1970, de-
classified 1997.

• Potentially known at NSA in 1965.

– Potential idea: the “codebook paradigm”—reversing a function
may be difficult.

– Potential application: Engineers can encrypt the code for oper-
ating nuclear weapons. But only the serving commander can de-
crypt, and release the bomb.

1



Chapter 1

The RSA Cipher and its
Algorithmic Foundations

The most important—that is, most applied and most analyzed—asymmetric
cipher is RSA, named after its inventors Ron Rivest, Adi Shamir, and Len
Adleman. It uses elementary number theoretic algorithms, and its supposed
security relies on the hardness of factoring large numbers into primes, al-
though breaking RSA might be easier then factoring, see Section 2.2.

The three fundamental arithmetic algorithms for implementing RSA are

• binary power algorithm,

• Euclidean algorithm,

• chinese remainder algorithm,

the last two of them known from Part I of these lectures (in the context of lin-
ear ciphers). These algorithms are basic not only for cryptography but more
generally for algorithmic algebra and number theory (“computer algebra”).
Moreover they are fundamental also for numerical mathematics—for prob-
lems that don’t require approximate numerical solutions in floating-point
numbers but exact solutions in integers, rationals, or symbolic expressions.

2



1.1 Description of the RSA Cipher

Parameters

The three parameters

• n = module,

• e = public exponent,

• d = private exponent,

are positive integers with

(1) med ≡ m (mod n) for all m ∈ [0 . . . n− 1].

Naive Description

The first idea is to set

M = C = Z/nZ, K ⊆ [1 . . . n− 1]× [1 . . . n− 1].

For k = (e, d) we have

Ek : M −→ C, m 7→ c = me mod n,

Dk : C −→M, c 7→ m = cd mod n.

This description is naive for n is variable, and (necessarily, as we’ll see soon)
a part of the public key. In particular the sets M and C vary.

More Exact Description

We want to describe RSA in a form that fits the general definition of a cipher.
To this end we note that for an l bit number n we have 2l−1 ≤ n < 2l, thus
fix the parameters:

• l = bit length of the module (= “key length”),

• l1 < l bit length of plaintext blocks,

• l2 ≥ l bit length of ciphertext blocks.

We construct a block cipher M −→ C over the alphabet Σ = F2 with

M = Fl12 ⊆ Fl22 = C.

The key k = (n, e, d) ∈ N3 is chosen with (2l−1 ≤ n < 2l or equivalently:)

`(n) := blog2 nc+ 1 = l, 1 ≤ e ≤ n− 1, 1 ≤ d ≤ n− 1,

3



such that equation (1) holds. The symbol `(n) denotes the number of bits,
that is, the length of the binary representation of n.

To encrypt a plaintext block m of length l1 by Ek we interpret it as
the binary representation of an integer. The result c, a non-negative integer
< n, has a binary representation by l2 bits—completed with leading zeroes
if necessary, or better yet, with random leading bits.

To decipher the ciphertext block c we interpret it as a non-negative
integer c < n and transform it into m = cd mod n.

Really Exact Description

See PKCS = ‘Public Key Cryptography Standard’ #1:
https://tools.ietf.org/html/rfc8017.

Questions to Address

• How to find suitable parameters n, d, e such that (1) holds?

• How to efficiently implement the procedures for encryption and de-
cryption?

• How to assess the security?

Speed

Note that encryption and decryption are significantly slower than for com-
mon symmetric ciphers. (Estimates range up to a factor of roughly 104.)

4

https://tools.ietf.org/html/rfc8017


1.2 The Binary Power Algorithm

The procedure for raising powers in a quite efficient way has a natural de-
scription in the abstract framework of a multiplicative semigroup H. The
task is: Compute the power xn for x ∈ H and a positive integer n—the prod-
uct of n factors x—by as few multiplications as possible. The naive direct
method,

xn = x · (x · · ·x) ,

involves n − 1 multiplications. The expense is proportional with n, hence
grows exponentially with the number `(n) of bits (or decimal places) of n.
A much better idea is the binary power algorithm. In the case of an
additively written operation (strictly speaking for the semigroup H = N) it
is known also as Russian peasant multiplication, and was known in ancient
Egypt as early as 1800 B. C., in ancient India earlier than 200 B. C.

The specification starts from the binary representation of the exponent
n,

n = bk2
k + · · ·+ b02

0 with bi ∈ {0, 1}, bk = 1,

thus k = blog2 nc = `(n)− 1. Then

xn = (x2
k
)bk · · · (x2)b1 · xb0 .

This suggests the following procedure: Compute x, x2, x4, . . . , x2
k

in order by
squaring k times (and keeping the intermediate results), and then multiply
the x2

i
that have bi = 1. The number of factors is ν(n), the number of 1’s

in the binary representation. In particular ν(n) ≤ `(n). This makes a total
of `(n) + ν(n)− 2 multiplications.

We have shown:

Proposition 1 Let H be a semigroup. Then for all x ∈ H and n ∈ N we
can compute xn by at most 2 · blog2 nc multiplications.

This expense is only linear in the bit length of n. Of course to assess the
complete expense we have to account for the cost of multiplication in the
semigroup H.

Here is a description as pseudocode:

5



Procedure BinPot
Input parameters:

x = base
[locally used for storage of the iteratively computed squares]

n = exponent
Output parameters:

y = result xn

[locally used for accumulation of the partial product]
Instructions:

y := 1.
while n > 0:

if n is odd: y := yx.
x := x2.
n := bn/2c.

Remarks

1. The algorithm is almost optimal, but not completey. The theory of
“addition chains” in number theory yields an asymptotic behaviour
of log2 n for the average minimum number of multiplications, roughly
half the value from Proposition 1.

2. That the numbers of involved multiplications differ depending on the
exponent is the starting point of timing and power attacks invented
by Paul Kocher. Imagine a device, say a smart card, that computes
powers with a secret exponent. Then the different timings or power
consumptions reveal information about the exponent.

6



1.3 The Carmichael Function

We assume n ≥ 2.
The Carmichael function is defined as the exponent of the multiplica-

tive group Mn = (Z/nZ)×:

λ(n) := exp(Mn) = min{s ≥ 1 | as ≡ 1 (mod n) for all a ∈Mn};

in other words, λ(n) is the maximum of the orders of the elements of Mn.

Remarks

1. Euler’s theorem may be expressed as λ(n)|ϕ(n) (“exponent divides
order”). A common way of expressing it is

aϕ(n) ≡ 1 (mod n) for all a ∈ Z with gcd(a, n) = 1.

Both versions follow immediately from the definition.

2. If p is prime, then Mp is cyclic—see Proposition 2 below—, hence

λ(p) = ϕ(p) = p− 1.

By the chinese remainder theorem we have Mmn
∼= Mm ×Mn, hence by

Lemma 22 of Appendix A.10:

Corollary 1 For coprime m,n ∈ N2

λ(mn) = lcm(λ(m), λ(n)).

Corollary 2 If n = pe11 · · · perr is the prime decomposition of n ∈ N2, then

λ(n) = lcm(λ(pe11 ), . . . , λ(perr )).

Remarks

3. The Carmichael function for powers of 2 (proof as exercise or in
Appendix A.1):

λ(2) = 1, λ(4) = 2, λ(2e) = 2e−2 for e ≥ 3.

4. The Carmichael function for powers of odd primes (proof as exer-
cise or in Appendix A.3):

λ(pe) = ϕ(pe) = pe−1 · (p− 1) for p prime ≥ 3.

To prove the statement in Remark 2 we have to show that the multi-
plicative group mod p is indeed cyclic. We prove a somewhat more general
standard result from algebra:

7



Proposition 2 Let K be a field and G ≤ K× be a finite subgroup of order
#G = n. Then G is cyclic and consists exactly of the n-th roots of unity in
K.

Proof. For a ∈ G we have an = 1, hence G is contained in the set of roots of
the polynomial Tn− 1 ∈ K[T ]. Thus K has exactly n different n-th roots of
unity, and G contains all of them.

Now let m be the exponent of G, in particular m ≤ n. Lemma 24 of
Appendix A.10 yields that all a ∈ G are even m-th roots of unity. Hence
n ≤ m, so n = m, and G has an element of order n. 3

8



1.4 Suitable Parameters for RSA

Proposition 3 Let n ≥ 3 be an integer. The following statements are equiv-
alent:

(i) n is squarefree.

(ii) There exists an r ≥ 2 with ar ≡ a (mod n) for all a ∈ Z.

(iii) [RSA equation] For every d ∈ N and e ∈ N with de ≡ 1 (mod λ(n))
we have ade ≡ a (mod n) for all a ∈ Z.

(iv) For each k ∈ N we have ak·λ(n)+1 ≡ a (mod n) for all a ∈ Z.

Proof. “(iv) =⇒ (iii)”: Since de ≡ 1 (mod λ(n)), we have de = k · λ(n) + 1
for some k. Hence ade ≡ a (mod n) for all a ∈ Z.

“(iii) =⇒ (ii)”: Since n ≥ 3, we have λ(n) ≥ 2. Choosing an arbi-
trary d with gcd(d, λ(n)) = 1 and a corresponding e by congruence division
modλ(n) we get (ii) with r = de.

“(ii) =⇒ (i)”: Assume there is a prime p with p2|n. Then by (ii) we
have pr ≡ p (mod p2). But because of r ≥ 2 we have pr ≡ 0 (mod p2),
contradiction.

“(i) =⇒ (iv)”: By the chinese remainder theorem we only have to show
that ak·λ(n)+1 ≡ a (mod p) for all prime divisors p|n.

Case 1 : p|a. Then a ≡ 0 ≡ ak·λ(n)+1 (mod p).
Case 2 : p - a. Because of p − 1|λ(n), we have aλ(n) ≡ 1 (mod p), hence

ak·λ(n)+1 ≡ a · (aλ(n))k ≡ a (mod p). 3

Corollary 1 The RSA procedures work for a module n if and only if n is
squarefree.

To find suitable exponents d and e we have to know λ(n) or, better yet
(and necessarily as it will turn out) the prime decomposition of n. Then the
procedure of key generation suggests itself:

1. Choose different primes p1, . . . , pr and form the module n := p1 · · · pr.

2. Compute λ(n) = lcm(p1−1, . . . , pr−1) using the Euclidean algorithm.

3. Choose the public exponent e ∈ N2, coprime with λ(n).

4. Compute the private exponent d with de ≡ 1 (mod λ(n)) by congru-
ence division.

Then take the pair (n, e) as public key, and the exponent d as private key.

Corollary 2 Who knows the prime decomposition of n can compute the
private key d from the public key (n, e).

9



Practical Considerations

1. The usual choice is r = 2. Then the module has only two prime factors
p and q that, as a compensation, are very large. Factoring this kind
of integers n = pq seems especially hard. It is crucial that the primes
are chosen completely at random. Then an attacker has no hint for a
guess.

2. For e we may choose a prime with e - λ(n), or a “small” integer say
e = 3—more on the dangers of this choice later. A common standard
choice is the prime e = 216 + 1, provided e - λ(n). The binary rep-
resentation of this integer contains only two 1’s, making the binary
power algorithm for enryption very fast. (For digital signature this
is the verification of the signature.) However this choice of e doesn’t
make decryption (or generating a digital signature) more efficient.

3. After generating the keys we don’t need p, q, and λ(n) anymore, so we
could destroy them.

However: Since d is a “random” integer in the interval [1 . . . n] taking
d-th powers is costly even with the binary power algorithm. It becomes
somewhat faster when the owner of the private key computes cd mod p
and mod q—using integers of about half the size—and then composes
the result mod n with the chinese remainder theorem. This procedure
yields a small advantage in speed for decryption (or generating a digital
signature).

4. Instead of λ(n) we could use its multiple ϕ(n) = (p − 1)(q − 1) for
calculating the exponent.

Advantage: We save (one) lcm computation.

Drawback: In general we get a larger exponent d, slowing down each
single decryption.

5. Notwithstanding Corollary 1 the RSA procedure works in a certain
sense even if the module n is not squarefree. Decryption using the chi-
nese remainder theorem is slightly more complex, involving an addi-
tional “Hensel lift.” However decryption breaks down for plaintexts
a that are multiples of a prime p with p2|n. Note that this effect is
compatible with Corollary 1!

The danger of hitting a plaintext divided by a multiple prime factor
of n by chance is negligeable but grows with the number of prime
factors. Even for a squarefree module n a plaintext divided by a prime
factor would immediately yield a factorization of n, and hence reveal
the private key.

10



Attention

The cryptanalytic approaches of the following chapter result in a set of side
conditions that should be strictly respected when generating RSA keys.

Exercises

1. Let p and q be two different odd primes, and n = p2q. Characterize the
plaintexts a ∈ Z/nZ that satisfy the RSA equation ade ≡ a (mod n).
Generalize the result to arbitrary n.

2. Show that an integer d ∈ N is coprime with λ(n) if and only if d is
coprime with ϕ(n).

11



Chapter 2

Cryptanalysis of RSA

“Cryptanalysis of RSA” doesn’t break the cipher—except in a few exceptional
situations—but traces out the framework for applying it in a secure way
according to our best judgment. In particular it helps avoiding some traps.
We want answers to the questions:

• Do there exist sufficiently many keys to evade an exhaustion attack?

• Which mathematical results might lead to breaking an RSA cipher-
text? Or to a computation of the private key?

• How to choose the parameters in order to avoid weaknesses?

There is a good overview in:

D. Boneh: Twenty years of attacks on the RSA cryptosystem.
Notices of the American Mathematical Society 46 (1999), 203–
213.

12



2.1 The Prime Number Theorem

Let π(x) be the number of primes p ≤ x. Somewhat more generally let
πa,b(x) be the number of primes p ≤ x of the form p = ak + b (in other
words: congruent to b modulo a). The prime number theorem states the
asymptotic relation ()

πa,b(x) ∼ 1

ϕ(a)
· x

ln(x)

provided a and b are coprime. The special case a = 1, b = 0, is:

π(x) ∼ x

ln(x)
.

There are many theoretical and empirical results concerning the quality of
this approximation. An instance is a formula by Rosser and Schoenfeld:

x

ln(x)
·
(

1 +
1

2 ln(x)

)
< π(x) <

x

ln(x)
·
(

1 +
3

2 ln(x)

)
for x ≥ 59.

The prime number theorem helps for answering the following questions (al-
beit not completely exactly):

How many prime numbers < 2k do exist?

Answer: π(2k), that is about

2k

k · ln(2)
,

at least (for k ≥ 6)
2k

k · ln(2)
·
(

1 +
1

2k ln(2)

)
.

For k = 128 this number is about 3.8 · 1036, for k = 256, about 6.5 · 1074.

How many k-bit primes do exist?

Answer: π(2k)− π(2k−1), that is about

2k

k · ln(2)
− 2k−1

(k − 1) · ln(2)
=

2k−1

ln(2)
· k − 2

k(k − 1)
≈ 1

2
· π(2k) .

For k = 128 this amounts to about 1.9 ·1036, for k = 256, to about 3.2 ·1074.
In other words, a randomly chosen k-bit integer is prime with probability

π(2k)− π(2k−1)

2k−1
≈ π(2k)

2k
≈ 1

k · ln(2)
≈ 1.44

k
.

13



For k = 256 this is about 0.0056.
The inequality

π(2k)− π(2k−1) > 0.71867 · 2k

k
for k ≥ 21.

gives a reliable lower bound.
In any case the number of primes of size relevant for RSA is huge and

makes an exhaustion attack completely obsolete.

Special Primes

Often cryptologists want their primes to have special properties:

Definition A special prime (or safe prime) is a prime of the form p =
2p′ + 1 where p′ is an odd prime (then p′ is also called a Germain
prime).

Remark Let p be special. Then p ≡ 3 (mod 4), for p = 2p′ + 1 ≡ 2 · a+ 1
where a = 1 or 3.

Definition A superspecial prime is a prime of the form p = 2p′+1 where
p′ = 2p′′ + 1 is a special prime.

Examples The two smallest superspecial primes are p = 23 (with p′ = 11,
p′′ = 5) and q = 47 (with q′ = 23, q′′ = 11).

Are there enough primes to fulfill these special or superspe-
cial requests?

Frankly speaking, there is no exact answer. However we can give (unproven!)
fairly exact estimates for these numbers:

• As we saw, a (positive) k-bit integer is prime with probability α
k where

α ≈ 1.44.

• If p = 2p′ + 1 is special, then p′ is a k/2-bit integer, and is prime
(heuristically, but in fact unknown) with probability 2α

k .

• Thus we estimate that a random k-bit integer is a special prime with
probability α

k ·
2α
k = 2α2

k2
, and we expect that α2

k2
· 2k of the 2k−1 k-bit

integers are special primes (assuming that the “events” p prime and
(p− 1)/2 prime are independent).

• Moreover p′′ = (p′ − 1)/2 is a k/4-bit integer, hence prime with prob-
ability 4α

k .

14



• This makes up for a probability of

α

k
· 2α

k
· 4α

k
=

8α3

k3

for a k-bit integer to be a superspecial prime.

• By this consideration—although we have no mathematical proof for
it—we expect that

α3

k3
· 2k+2

of the 2k−1 k-bit integers are superspecial primes.

• For k = 256 = 28 (and α2 ≈ 2, α3 ≈ 3) we may hope for

2 · 2256 · 2−16 ≈ 3.5 · 1072 special primes,

3 · 2258 · 2−24 ≈ 8.3 · 1070 superspecial primes.

Extensions

Let pn be the n-th prime, thus p1 = 2, p2 = 3, p3 = 5, . . . . Let ϑ(x) be the
sum of the logarithms of the primes ≤ x,

ϑ(x) =
∑

p≤x, p prime

ln(p).

Then we have the asymyptotic formulas

pn ∼ n · ln(n),

ϑ(x) ∼ x,

and the error bounds due to Rosser/Schoenfeld:
(1)

n ·
(

ln(n) + ln ln(n)− 3

2

)
< pn < n ·

(
ln(n) + ln ln(n)− 1

2

)
for n ≥ 20,

(2) x ·
(

1− 1

ln(x)

)
< ϑ(x) < x ·

(
1− 1

2 ln(x)

)
for n ≥ 41.

For a proof of the prime number theorem see any textbook on analytic
number theory, for example

Apostol, T. M. Introduction to Analytic Number Theory.
Springer-Verlag, New York 1976.

15



2.2 Computing the Key and Factorization

Question: How to compute the private RSA exponent d, given the public
exponent e and the module n?

Answer: Each of the following tasks (A) – (D) is efficiently reducible to
each of the other ones:

(A) Computing the private key d.

(B) Computing λ(n) (Carmichael function).

(C) Computing ϕ(n) (Euler function).

(D) Factoring n.

Breaking RSA is the (possibly properly) easier task:

(E) Computing e-th roots in Z/nZ.

The “proof” (not an exact proof in the mathematical sense) follows the
roadmap:

C -A

B

E

D

66

-

-

�
�	

We always assume that n and the public exponent e are known, and
n = p1 · · · pr with different primes p1, . . . , pr.

Clearly “A −→ E”: Taking an e-th root means raising to the d-th power.
So if d is known, computing e-th roots is easy.

Note that the converse implication is unknown: Breaking RSA could be
easier than factoring.

“D −→ C”: ϕ(n) = (p1 − 1) · · · (pr − 1).

“D −→ B”: λ(n) = kgV(p1 − 1, . . . , pr − 1).

“B −→ A”: Compute d by congruence division from de ≡ 1 (mod λ(n)).

“C −→ A”: Since ϕ(n) has exactly the same prime factors as λ(n), also
ϕ(n) is coprime with e. From de ≡ 1 (mod ϕ(n)) we get a solution for d by
congruence division. This might not be the “true” exponent, but works in
the same way as private key since a forteriori de ≡ 1 (mod λ(n)).

“A −→ D” is significantly more involved. Moreover we only construct a
probabilistic algorithm.

16



Preliminary Remarks

1. It suffices to decompose n into two proper factors.

(a) Let n = n1n2 be a proper decomposition, and assume for sim-
plicity that n1 = p1 · · · ps with 1 < s < r. Then

λ(n1) = kgV(p1 − 1, . . . , ps − 1)| kgV(p1 − 1, . . . , pr − 1) = λ(n),

thus also de ≡ 1 (mod λ(n1)). This reduces the problem to the
analoguous ones for n1 and n2.

(b) Since the number of prime factors of n is at most log2(n) the
recursive reduction suggested by (a) is efficient.

2. How can a residue class w ∈ Z/nZ help with factoring n?

(a) Finding a w ∈ [1 . . . n−1] with gcd(w, n) > 1 decomposes n since
gcd(w, n) is a proper divisor of n.

(b) Finding a w ∈ [2 . . . n − 2] with w2 ≡ 1 (mod n) (that is a non-
trivial square root of 1 in Z/nZ) likewise decomposes n:

Since n|w2 − 1 = (w + 1)(w − 1) and n - w ± 1 we have
gcd(n,w + 1) > 1, and this decomposes n by (a).

Now let (d, e) be a pair of RSA exponents. Then also u := ed−1 = k·λ(n)
is known (with unknown k and λ(n)). Since λ(n) is even we may write

u = r · 2s with s ≥ 1 and r odd.

If we choose a random w ∈ [1 . . . n − 1], then we have to deal with two
possibilities:

• gcd(w, n) > 1—then n is decomposed.

• gcd(w, n) = 1—then wr2
s ≡ 1 (mod n).

In the second case we efficiently find the minimal t ≥ 0 with

wr2
t ≡ 1 (mod n).

Again we distinguish two cases:

• t = 0—bad luck, choose another w.

• t > 0—then wr2
t−1

is a square root 6= 1 of 1 in Z/nZ.

In the second case we distiguish:

• wr2
t−1 ≡ −1 (mod n)—bad luck, choose another w.

17



• wr2
t−1
/≡ −1 (mod n)—then n is decomposed by preliminary remark 2.

Thus every choice of w ∈ [1 . . . n− 1] has one of four possible outcomes,
two of them decompose n, and the other two flop. Denote the last two events
by

(En,u(w)/I) wr ≡ 1 (mod n)

(En,u(w)/II) wr2
t−1 ≡ −1 (mod n) for a t with 1 ≤ t ≤ s.

Altogether this yields a tree-like structure:

w ∈ [1 . . . n− 1] −→
gcd(w, n) > 1 −→ n decomposed SUCCESS
w ∈Mn −→

wr ≡ 1 (mod n) −→ (En,u(w)/I) FLOP

wr/≡ 1 (mod n) −→
wr2

t−1 ≡ −1 (mod n) −→ (En,u(w)/II) FLOP

wr2
t−1
/≡ −1 (mod n) −→ n decomposed SUCCESS

Thus our procedure decomposes n “with high probability” if there are
only “few” “bad” integers w with (En,u(w)/I,II). The next section will pro-
vide an upper bound for their number.

18



2.3 The Probability of Flops

Let n ∈ N3. Furthermore assume that u ∈ N2 is even, u = r · 2s with odd r
and s ≥ 1. We introduce the sets:

A(0)
u = B(0)

u := {w ∈Mn | wr = 1} [case (En,u/I)],

A(t)
u := {w ∈Mn | wr·2

t
= 1, wr·2

t−1 6= 1} for 1 ≤ t ≤ s,
B(t)
u := {w ∈ A(t)

u | wr·2
t−1

= −1} [case (En,u/II)],

Au :=
s⋃
t=0

A(t)
u = {w ∈Mn | wu = 1},

Bu :=

s⋃
t=0

B(t)
u [case (En,u) (I or II)].

C0 := {w ∈Mn | ordw odd},
C1 := {w ∈Mn | − 1 ∈ 〈w〉},
C := C0 ∪ C1.

Remarks

• A0
u ≤ Au ≤Mn are subgroups, as are A0

u ≤ C0 ≤Mn.

• B
(t)
u = A

(t)
u ∩ C for t = 0, . . . , s, since a cyclic group 〈w〉 can contain

at most one square root of 1 in addition to 1 itself.

• Hence also Bu = Au ∩ C.

• Bu is the exceptional set of “bad” integers with (En,u) from Section 2.2
that flop with factoring n. The following proposition upper bounds by
1
2 the probability of hitting an element of this set by pure chance. If
we try k random candidate integers the probability of not factoring n
is < 1/2k, hence extremely small even for moderate sizes of k

Proposition 4 Let n be odd and not a prime power. Let u = r · 2s be a
multiple of λ(n) with odd r. Then

#Bu ≤
1

2
· ϕ(n).

Proof. By the following lemma C, and a forteriori Bu, is contained in a
proper subgroup of Mn. 3

Lemma 1 (Dixon, AMM 1984) Let n ∈ N3. Assume 〈C〉 = Mn. Then n
is a prime power or even.

19



Proof. For this proof let λ(n) = r · 2s with odd r. (Since n ≥ 3, we have
s ≥ 1. The “old” meanings of r and s don’t occur in this proof.) Consider
the map

h : Mn −→Mn, w 7→ wr·2
s−1
.

This h is a group homomorphism with h(Mn) ⊆ {v ∈ Mn | v2 = 1} (group
of square roots of 1 modn). Since the w ∈ C0 have odd order h(C0) ⊆ {1}.

For w ∈ C1 we have h(w) ∈ 〈w〉 and h(w)2 = 1, hence h(w) is one of the
two roots of unity ±1 ∈ 〈w〉.

Together we have h(C) ⊆ {±1}.
If n is not a prime power (and a forteriori not a prime) there

is a decomposition n = pq into coprime factors p, q ∈ N2. Since
2s|λ(n) = lcm(λ(p), λ(q)) we may assume 2s|λ(p). The chinese remainder
theorem provides a w ∈ Mn with w ≡ 1 (mod q) such that w mod p has
order 2s. Then h(w)/≡ 1 (mod p), a forteriori h(w) 6= 1. Since h(w) ≡ 1
(mod q) we also have h(w) 6= −1—except when q = 2.

Therefore if n is not even nor a prime power we have the contradiction
h(Mn) * {±1}. 3

This also completes the missing step of Section 2.2: Who knows the
private RSA key is able to factor the module n.

20



2.4 Factoring Algorithms

A crucial question for the security of RSA is: How fast can we factorize large
integers?

• There are “fast” factoring algorithms for integers of the form ab ± c
with “small” values a and c, the most prominent examples are the
Mersenne and Fermat primes 2b± 1. The probability that the gen-
eration of RSA keys from random primes yields such a module is ex-
tremely low and usually neglected.

• Fermat factoring of n: Find an integer a ≥
√
n such that a2 − n is a

square = b2. This yields a decomposition

n = a2 − b2 = (a+ b)(a− b).

Example: n = 97343,
√
n ≈ 311.998, 3122 − n = 1, n = 313 · 311. This

method is efficient provided that we find an a close to
√
n, or a2 ≈ n.

In the case n = pq of two factors this means a small difference |p− q|.
(Un-) fortunately finding a seems to be hard.

• The fastest general purpose factoring algorithms

– number field sieve (Silverman 1987, Pomerance 1988, A. K.
Lenstra/ H. W. Lenstra/ Manasse/ Pollard 1990),

– elliptic curve factoring (H. W. Lenstra 1987, Atkin/ Morain
1993),

need time of size
Ln := e

3
√

lnn·(ln lnn)2 ,

hence are “subexponential”, but also “superpolynomial”. Anyway they
show that factoring is a significantly more efficient attack on RSA than
exhaustion (“brute force”).

This results in the following estimates for factoring times:

integer bits decimal expense status
places (MIPS years)

rsa120 399 120 100 < 1 weak on a PC
rsa154 512 154 100 000 te Riele 1999
rsa200 665 200 (∗) Franke 2005

1024 308 1011 insecure
2048 616 1015 for short-term security

(∗) 80 CPUs à 2.2 GHz in 4.5 months

21



When we extrapolate these estimates we should note:

• they are rough approximations only,

• they hold only as long as nobody finds significantly faster factoring
algorithms.

Remember that the existence of a polynomial factoring algorithm is an open
problem.

Some recent developments are already incorporated into the table:

• A paper by A. K. Lenstra/ E. Verheul, Selecting cryptographic key
sizes summarizes the state of the art in the year 2000 and extrapolates
it.

• A proposal by Bernstein, Circuits for integer factorization triples
(!) the length of integers that can be factorized with a given expense,
using the fastest factoring algorithms.

• Special-purpose hardware designs by Shamir and his collaborators:

– TWINKLE (The Weizmann Institute Key Locating Machine)
(1999) is the realization in hardware of an idea by Lehmer from
the 1930s that accelerates factoring 100–1000 times,

– TWIRL (The Weizmann Institute Relation Locator) (2003) ac-
celerates factoring another 1000–10000 times following Bern-
stein’s idea.

Taken together these approaches make factoring 106 (or 220) times
faster using the number field sieve. However the order of magnitude
Ln of the complexity is unaffected.

This progress lets the Lenstra/ Verheul estimates look overly optimistic.
1024-bit keys should no longer be used. 2048-bit keys might be secure enough
to protect information for a few years.

Recommendation: Construct your RSA module n = pq from primes p
and q that have bit lengths of at least 2048 bits, and choose them such
that also their difference |p− q| has a bit length of about 2048 bits.

22



2.5 Iteration Attack

Consider a bijective map E : M −→ M of a finite set M onto itself and
its inverse D = E−1 (think of E as an encryption function). Then E is
an element of the full symmetric group S(M) that has the (huge) order
#S(M) = (#M)!. Nevertheless this group is finite, thus there is an s ∈ N1

with Es = 1M , hence
D = Es−1.

As a consequence an attacker can compute D from E by sufficiently many
iterations. This attack is relevant only for asymmetric ciphers where the
attacker knows E. The only protection against it is to choose the order of
E, the smallest s ≥ 1 with Es = 1M , as large as possible.

The Example of RSA

Let M = Z/nZ, then #S(M) = n!, where n itself is a very large integer.
The attacker could compute En!−1, but even the fastest power algorithm
is not fast enough to accomplish this task in this universe. So the attack
doesn’t seem to put RSA into immediate danger.

However, as a closer look reveals, RSA encryption functions are con-
tained in a significantly smaller subgroup of S(M)—fortunately the attacker
doesn’t know its order. To see this consider the map

Φ: N −→ map(M,M), e 7→ Ee with Ee(a) = ae mod n.

Here are some of its properties:

1. For e, f ∈ N we have Eef = Ee ◦ Ef since aef ≡ (af )e (mod n) for all
a ∈ M . Hence Φ is a homomorphism of the multiplicative semigroup
N.

2. If e ≡ f (mod λ(n)), then Ee = Ef : Assume f = e + kλ(n), then
af = ae+kλ(n) ≡ ae (mod n) for all a ∈M .

3. If e mod λ(n) is invertible, then Ee is bijective: Assume
de ≡ 1 (mod λ(n)), then Ed ◦ Ee = E1 = 1M . Hence the map

Φ̄: Mλ(n) −→ S(M)

induced by Φ is a group homomorphism.

4. Φ̄ is injective: For if Φ(e) = Ee = 1M , then ae ≡ a (mod n) for all
a ∈M , hence ae−1 ≡ 1 (mod n) for all a ∈Mn, hence λ(n)|e− 1, thus
e ≡ 1 (mod λ(n)).

These remarks prove:

23



Proposition 5 The RSA encryption functions Ee form a subgroup
Hn ≤ S(M) that is isomorphic with Mλ(n) and has order ϕ(λ(n)) and ex-
ponent λ(λ(n)).

Of course the order of a single encryption function Ee could be even
much smaller: All we can say is that the cyclic subgroup 〈e〉 ≤ Mλ(n) has
order s := ord(e) | λ(λ(n)).

This observation raises two problems:

1. How large is λ(λ(n))?

2. Under what conditions is ord(e) = λ(λ(n))? Or at least not signifi-
cantly smaller?

Answer to 1 (without proof): “In general” λ(λ(n)) ≈ n
8 .

If we want to be sure about this we should choose p, q as special primes
p = 2p′ + 1, q = 2q′ + 1 with different primes p′, q′ ≥ 3. Then for n = pq we
have

λ(n) = kgV(2p′, 2q′) = 2p′q′ =
(p− 1)(q − 1)

2
≈ n

2
.

If moreover p and q are superspecial primes, that is, p′ = 2p′′ + 1 and
q′ = 2q′′ + 1 are special primes too, then

λ(λ(n)) = 2p′′q′′ =
(p− 3)(q − 3)

8
≈ n

8
.

By the prime number theorem, see Section 2.1, we may expect that super-
special primes exist in astronomic quantities.

Answer to 2: in most cases (also without general proof).
Again, if we want to be sure, we should confine our choices to special or

even superspecial primes. We use some elementary results on finite groups,
see Lemmas 21, 22, and 23 of Appendix A.10.

Let p be an odd prime number. In the additive cyclic group Z/2pZ we
consider the subsets:

Ep = {a mod 2p | 0 ≤ a < p, a even} − {0},
Op = {a mod 2p | 0 ≤ a < p, a odd} − {p}.

Clearly, Z/2pZ = {0, p} ∪ Ep ∪Op, and

#Ep = #Op = p− 1.

The order of an element x ∈ Z/2pZ is

ordx =


1 ⇐⇒ x = 0,

2 ⇐⇒ x = p,

p ⇐⇒ x ∈ Ep,
2p ⇐⇒ x ∈ Op.

24



We transfer this result to an abstract cyclic group Z2p with generating
element g via the isomorphism

τ : Z/2pZ −→ Z2p, x 7→ gx.

Let Ep = τEP and Op = τOP . Then the result is:

Lemma 2 The order of an element h ∈ Z2p is

ordh =


1 ⇐⇒ h = 1,

2 ⇐⇒ h = gp,

p ⇐⇒ h ∈ Ep,
2p ⇐⇒ h ∈ Op.

Next we study the orders of the elements of the direct product Z2p×Z2q

for two different odd primes p and q. Applying Lemma 21 we see that the
order of a pair (g, h) for g ∈ Z2p and h ∈ Z2q is given by the following table:

ord g =
1 2 p 2p

ordh = 1 1 2 p 2p
2 2 2 2p 2p
q q 2q pq 2pq
2q 2q 2q 2pq 2pq

An obvious count yields:

Proposition 6 Let p and q be two different odd primes. Then the direct
product group Z2p ×Z2q has

(i) 1 element of order 1,

(ii) 3 elements of order 2,

(iii) p− 1 elements of order p,

(iv) 3 · (p− 1) elements of order 2p,

(v) q − 1 elements of order q,

(vi) 3 · (q − 1) elements of order 2q,

(vii) (p− 1) · (q − 1) elements of order pq,

(viii) 3 · (p− 1) · (q − 1) elements of order 2pq.

25



Again let p be a prime number. Then the multiplicative group Mp =
(Z/pZ)× of the finite field Z/pZ is cyclic of order p − 1. Let q be a prime
different from p and let n = p · q. Then by the Chinese Remainder Theorem
Mn
∼= Mp×Mq is (up to isomorphy) the direct product of two cyclic groups

of orders p− 1 and q − 1. Hence:

Lemma 3 Let n = pq be the product of two different odd primes p and q.
Then the multiplicative group Mn = (Z/nZ)× of the quotient ring Z/nZ
has order ϕ(n) = (p − 1)(q − 1) and exponent λ(n) = lcm(p − 1, q − 1). In
particular Mn is not cyclic.

The latter statement is due to the common divisor 2 of p− 1 and q − 1.
We now consider the case where p = 2p′ + 1 and q = 2q′ + 1 are special

primes. Then
ϕ(n) = 4p′q′ and λ(n) = 2p′q′.

By Proposition 5 the RSA encryption functions for the module n = pq
make up a group Hn isomorphic with Mλ(n). For special primes we therefore
have by Theorem 2 in Appendix A.4:

Proposition 7 Let n = pq be the product of two different special primes
p = 2p′ + 1 and q = 2q′ + 1. Then the RSA group

Hn
∼= Mλ(n)

∼= Zp′−1 ×Zq′−1

is the product of two cyclic groups of orders p′ − 1 and q′ − 1.

In order to derive some more easy results we assume that p and q are
superspecial primes, with p′ = 2p′′ + 1 and q′ = 2q′′ + 1. Then

Hn
∼= Mλ(n)

∼= Z2p′′ ×Z2q′′ ,

and Proposition 6 applies for the primes p′′ and q′′:

Proposition 8 Let n = pq be the product of two different superspecial
primes p = 2p′+ 1 and q = 2q′+ 1 with p′ = 2p′′+ 1 and q′ = 2q′′+ 1. Then
the RSA group Hn consists of

(i) 1 element of order 1,

(ii) 3 elements of order 2,

(iii) p′′ − 1 elements of order p′′,

(iv) 3 · (p′′ − 1) elements of order 2p′′,

(v) q′′ − 1 elements of order q′′,

26



(vi) 3 · (q′′ − 1) elements of order 2q′′,

(vii) (p′′ − 1) · (q′′ − 1) elements of order p′′q′′,

(viii) 3 · (p′′ − 1) · (q′′ − 1) elements of order 2p′′q′′.

Since 2p′′q′′ = λ(λ(n)) is the exponent of Hn we see that almost all of its
elements have their orders near the maximum. More precisely the number
of elements of order < 1

2 λ(λ(n)) = p′′q′′ is

1 + 3 + 4 · (p′′ − 1) + 4 · (q′′ − 1) = 4 · (p′′ + q′′ − 1).

Corollary 1 The number of elements of Hn with order < 1
2 λ(λ(n)) is

p+ q − 7.

Proof. Note that p′′ = (p− 3)/4. 3

Thus this number is ≈ 2·
√
n if p and q—as recommended in Section 2.4—

are chosen near
√
n. Then the proportion of elements of “small” orders is

≈ 2/
√
n, and this proportion asymptotically tends to 0 with growing values

of n.
As a consequence we resume: With negligeable exceptions s has the order

of magnitude of n/8. The best known general results are in Chapter 23 of
Shparlinski’s book, see the references for these lecture notes.

In addition to Section 2.2 we formulate the task

(F) Finding the order s of the encryption function.

In the sense of complexity theory we have the implication

(F) −→ (A)

but maybe not the reverse implication. If the order s is known, then D =
Es−1 and thus d = es−1 are efficiently computable. Finding the order of the
encryption function is at least as difficult as factoring the module.

27

http://www.staff.uni-mainz.de/pommeren/Cryptology/References.html


2.6 Breaking Single Ciphertexts

Breaking a single ciphertext (without necessarily computing the private key)
could be even easier: For a given ciphertext c we could have Ere(c) = c
even if Ere 6= 1M . If a is the corresponding plaintext, c = Ee(a), then the
cryptanalyst can compute:

Er−1e (c) = De(E
r
e(c)) = De(c) = a.

From a mathematical viewpoint we have the situation:

• The group Mλ(n) acts on the set M = Z/nZ, as does its cyclic subgroup
G := 〈e〉 ≤Mλ(n).

• For a ∈M the orbit is G · a = {aek | 0 ≤ k < s} (where s is the order
of e in the multiplicative group Mλ(n)).

• The stabilizer Ga = {f ∈ G | af ≡ a (mod n)} is a subgroup of G.
We have a natural bijective correspondence between the sets G ·a and
G/Ga.

• For the orbit length t = #G · a we have

t =
s

#Ga
, t|s|λ(λ(n))

Ere(c) = c ⇐⇒ Ere(a) = a ⇐⇒ t|r.

• G · c = G · a and #Gc = #Ga. (The two stabilizers are conjugate.)

• Finding the orbit length t of a and c is at least as difficult as breaking
the ciphertext c.

This suggests yet another problem:

3. Under what conditions is t = s, in other words, which stabilizers Ga
are trivial? Or at least quite small?

Answer once more (without proof): in most cases. For superspecial
primes p and q where λ(λ(n)) = 2p′′q′′ we expect by similar considerations
as in Section 2.5 that t < p′′q′′ only for a negligeable set of exceptions.

The following two papers show how low is the risk of hitting a small
orbit length by pure chance, enabling an iteration attack:

• J. J. Brennan/ Bruce Geist, Analysis of iterated modular expo-
nentiation: The orbits of xα mod N . Designs, Codes and Cryptog-
raphy 13 (1998), 229–245.

• John B. Friedlander/ Carl Pomerance/ Igor E. Shparlin-
ski, Period of the power generator and small values of Carmichael’s
function. Mathematics of Computation 70 (2001), 1591–1606, +
71 (2002), 1803–1806.

28



2.7 Re-Use of a Module

Question: What happens if two different participants use the same RSA
module n?

In other words, A and B use (n, eA) and (n, eB) as public keys.
Obviously A and B may read each other’s messages since both can fac-

torize n and hence compute the other’s private key. Thus a common module
makes sense only in a cooperative situation where A and B absolutely trust
each other.

However it’s even worse: A message a sent to both A and B is readable
by everyone. The ciphertexts are:

cA = aeA mod n, cB = aeB mod n.

Assuming eA and eB coprime is no significant loss of generality. Then the
attacker, using the extended Euclidean algorithm, finds coefficients x and y
with

xeA + yeB = 1.

Necessarily x and y have opposite signs, assume x < 0. If gcd(cA, n) > 1,
then the attacker can decompose n and is done. Otherwise she computes

g := c−1A mod n

by congruence division and gets

g−x · cyB ≡ (aeA)x · (aeB)y ≡ a (mod n),

breaking the ciphertext without computing the private keys dA and dB.
Hence the common module n is secure only when A and B trust each

other and moreover keep the module secret. But in this situation it makes
much more sense to use a symmetric cipher.

29



2.8 Small Exponents

Question: Is RSA in danger if someone chooses a small public exponent e?

The exponent e = 1 is nonsensical since it leaves plaintexts unencrypted.
The exponent e = 2 doesn’t work for RSA since it is even and thus not

coprime with λ(n). Nevertheless the related Rabin cipher uses e = 2. Here
the receiver of the message must be able to take square roots mod n, and
this works since he knows the prime factors of n (see later). (By the way
he must also be able to recognize the true plaintext among several different
square roots.)

Same Message for Several Receivers

For RSA the smallest potentially suited exponent is e = 3. However it en-
ables an attack that applies as soon as someone sends the same message a
to three different receivers A, B, and C. Let their public keys be (nA, 3),
(nB, 3), and (nC, 3). Assume the modules nA, nB, and nC are pairwise co-
prime, otherwise the attacker factorizes at least two of them and reads a.
Then (with some luck) she intercepts three ciphertexts

cA = a3 mod nA, cB = a3 mod nB, cC = a3 mod nC,

with 0 ≤ a < nA, nB, nC, thus a3 < nAnBnC. Using the chinese remainder
algorithm she constructs an integer c̃ ∈ Z with

0 ≤ c̃ < nAnBnC

such that
c̃ ≡ cX mod nX for X = A,B,C.

By uniqueness c̃ = a3 in Z. So she computes a = 3
√
c̃ by taking the integer

root in Z. This is an efficient procedure. (In this situation she doesn’t succeed
with computing the private exponents.)

This attack obviously generalizes to other “small” shared public expo-
nents e: If the same message is sent to e different people, then everybody
can read it. This attack is not completely unrealistic: Think for example of
fixed “protocol information” at the beginning of a larger message. Even in
classical cryptography an important maxim was: Never encrypt the same
plaintext with different keys.

In practice the exponent e = 216 +1 = 65537 is considered as sufficiently
secure for “normal” situations.

Stereotypical Message Parts

Consider the key parameters (n, e, d). Imagine an attack with known plain-
text that reads:

30



Der heutige Tagesschluessel ist:********

(“The master key for today is: . . . ”, example by Julia Dietrichs) with known
(stereotypical) 32 byte part “Der heutige Tagesschluessel ist:”, and
unknown 8 byte part “********”.

This message is encoded by the 8-bit character code ISO-8859-1 (used
for German texts) as a sequence of 40 bytes or 320 bits, and for encryption
by RSA interpreted as an integer a ∈ [0 . . . n− 1] (assume n has more then
320 bits, and e = 3). Decompose a as a = b + x where b corresponds to
the known, and x, to the unknown part. Since the latter forms the end of
the message and consists of 64 bits we know x < 264. Encryption yields the
ciphertext

c = ae mod n = (b+ x)e mod n.

Hence the secret x is a root of the polynomial

(T + b)e − c ∈ (Z/nZ)[T ].

At first sight this observation doesn’t seem alarming since we know of no
general efficient algorithms that compute roots. However algorithms for cer-
tain special cases exist, for instance:

Coppersmith’s algorithm
Let f ∈ (Z/nZ)[T ] be a polynomial of degree r. The algorithm
finds all roots x of f with 0 ≤ x < r

√
n (or proves that there are

none).
The execution time is polynomial in log n and r.
(The algorithm uses the “LLL algorithm” for reduction of lattice
bases.)

In our example n has at least 321 bits, and e = 3. Thus the algorithm
outputs x since x3 < 2192 < 2320 < n.

This is only a simple example of a larger class of attacks for special
situations that amount to a computation of roots mod n.

Exercise. Modify the attack for a situation where the unknown part of
the plaintaxt consists of some contiguous letters surrounded by known
plaintext sequences.

31



2.9 The Signature Trap

The signature trap doesn’t challenge the security of RSA itself, but the frame
conditions of its use: Since reversing the order of encryption and decryption
is the basic mechanism of digital signatures the user has to take care that
he doesn’t inadvertently decrypt a ciphertext in the erroneous belief that
he digitally signs a document. Would the standard input to the signature
algorithm be a normal plaintext, the user would realize this situation at
once. However for (at least) three reasons the situation is different:

1. To get acceptable performance usually a digital signature is applied to
a (cryptographic) hash value of a document. This cannot be distigu-
ished from a random bitstring.

2. Strong authentication requires digitally signing a random bitstring in-
stead of entering a password to prove the user’s identity. Even if the
result was a decrypted plaintext—the user wouldn’t see it at all since
it is immediately sent to the communication partner (that might be a
server, or a “man in the middle”).

3. Moreover the attacker could present an arbitrary text that is “cam-
ouflaged” by some kind of encryption, and require the user to “sign”
(i. e. decrypt) it. Even a close inspection of the result would not detect
the fraud—see below. This is a otherwise very useful property of RSA:
It is the basis for blind signatures and hence the generation of digital
pseudonyms and anonymous transactions.

By the way this an instance of an attack with chosen ciphertext. To escape
this attack in practice each of the three (or four) functions

• encryption,

• digital signature,

• strong authentication,

• (optionally) blind signature,

should use a different key pair.
Now for the “camouflage” that disguises the chosen ciphertext attack.

Here is the procedure:

1. The attacker M (“Mallory”) has an intercepted ciphertext x = EA(a)
and would like to read it. He encrypts it as y = C(x) using a function
C known only to him.

2. He presents y to his victim A (“Alice”) and requires a digital signature.
A generates z = DA(y).

32



3. M removes the “camouflage” by a suitable inverse transformation C ′.
For this he needs a pair (C,C ′) of transformations such that

C ′ ◦DA ◦ C = DA.

Then a = DA(x) = C ′(z).

As a peculiarity of RSA such pairs (C,C ′) of transformations exist: Let
EA(a) = ae mod n, and take C as the shift by ue on Mn = (Z/nZ)×, and
C ′ as the multiplication by u−1 mod n where u ∈ Mn is randomly chosen.
Thus the attack runs through the steps:

1. M chooses u und computes y = C(x) = uex mod n.

2. A generates z = yd mod n.

3. M computes

C ′(z) = zu−1 = ydu−1 = uedxdu−1 = xd = a

in Z/nZ.

33



2.10 More Attacks

Finally we give a short overview over some other attacks on RSA. For a com-
prehensive treatment consult the paper by D. Boneh (see the introduction
of this section):

1. Small private exponent: M. Wiener detected a way of efficiently
computing the private key d from the public key (n, e) using continued
fractions in the case d < 1

3 · 4
√
n.

2. Related plaintexts after Franklin/Reiter. Assume two different
plaintexts a1 and a2 are related by an affine equation a2 = sa1 + t
with known coefficients s, t 6= 0. Then the corresponding plaintexts
are efficiently computable from the public key (n, e), the coefficients s
and t and the ciphertexts. Coppersmith found a situation that forces
such an affine equation in the case where a1 and a2 originate from the
same plaintext by “padding” differently.

3. Partial leak after Boneh/Durfee/Frankel/Coppersmith. If the
last quarter of the bits of one of the integers d (the private exponent),
p, or q (the prime factors of the module) are known, then n may be
efficiently factorized.

4. Timing and power attacks after Kocher. The attacker observes
the CPU during a decryption and measures the execution time or the
power consumption. From this she gains informations about the bits
of the private exponent. See the binary power algorithm, Section 1.2.

5. Differential fault analysis after Shamir et al. The attacker exposes
the processor (for instance a smartcard) to environment conditions
slightly outside the range where the specification guarantees a fault-
less operation, for instance by deforming, heating, radiation. Then the
processor will produce single faulty bits that allow statistical inferences
about the internal parameters.

Other attacks don’t target the RSA algorithm itself but bugs in the imple-
mentation, faulty use in cryptographic protocols, flawed interaction with the
system environment, and other mistakes.

In some situations using modules with more then two prime factors might
even be advantageous, as the following paper suggests:

• M. Jason Hinek, Mo King Low, Edlyn Teske: On some attacks on
multi-prime RSA. SAC 2002, 385–404.

34



Chapter 3

Primality Tests

A crucial question when implementing RSA is how to find the necessary
primes for key generation. The answer will be given in form of efficient
procedures. Start with a random integer of the desired length and test it for
primality. If it is not prime take the next integer and so on. Eventually a
prime will occur.

For this we need procedures that efficiently decide whether an integer is
prime or not—primality tests.

We’ll encounter a phenomenon that is familiar also with other mathe-
matical problems (for instance linear optimization, numerical approximation
of roots of polynomials over the real or complex numbers):

• There is an algorithm that gets by with polynomial cost.

• There is a “standard algorithm” (in the examples: the simplex method,
the Newton algorithm) that is much more efficient for “most” in-
stances, but needs more than polynomial cost in the “worst case”.
In practice this algorithm is the preferred one.

For primality testing the AKS algorithm is polynomial, but usually slower
than the established Rabin algorithm. The latter is usually very efficient,
but in the worst case even fails to deliver a correct result.

All these primality tests have a considerable overhead. Therefore for a
practical implementation it makes sense to first check divisibility by “small”
primes, say primes < 106, depending on the available storage (precompute
a list L of small primes).

If we need a random prime of a certain size we randomly choose an
integer r of this size. If r is even we increment it by 1. Then we sieve an
interval [r, r+s] for multiples of the primes in L by Eratosthenes’ method.
We test the remaining integers for primality until we find one that passes
the test. In most cases this will be the first one already.

35



3.1 The Pseudoprime Test

How can we identify an integer as prime? The “naive” approach is trial
divisions by all integers ≤

√
n, made perfect in the form of Eratosthenes

sieve. An assessment of the cost shows that this approach is not efficient
since

√
n = exp(12 log n) grows exponentially with the length log n of n.

An approach to identify primes without trial divisions is suggested
by Fermat’s theorem: If n is prime, then an−1 ≡ 1 (mod n) for all
a = 1, . . . , n − 1. Note that this is a necessary condition only, not a suf-
ficient one. Thus we say that n is a (Fermat) pseudoprime to base a
if an−1 ≡ 1 (mod n). Hence a prime number is a pseudoprime to each base
a = 1, . . . , n− 1.

Examples

1. The congruence 214 ≡ 4 (mod 15) shows that 15 is not prime.

2. We have 2340 ≡ 1 (mod 341) although 341 = 11 · 31 is not prime.
Anyway 3340 ≡ 56 (mod 341), hence 341 fails the pseudoprime test to
base 3.

The pseudoprime property is not sufficient for primality. Therefore we
call n a Carmichael number if n is a pseudoprime to each base a that is
coprime with n, but n is not a prime.

Another way to express pseudoprimality is that the order of a in Mn

divides n − 1. Thus n is a Carmichael number or prime if and only if
λ(n) |n− 1 with the Carmichael function λ.

Unfortunately there are many Carmichael numbers, so pseudoprimal-
ity cannot even considered as “almost sufficient” for primality. In 1992 Al-
ford, Granville, and Pomerance proved that there are infinitely many
Carmichael numbers.

The smallest Carmichael number is 561 = 3 · 11 · 17. This is a direct
consequence of the next proposition.

Proposition 9 A natural number n is a Carmichael number if and only
if it is not prime, squarefree, and p− 1 |n− 1 for each prime divisor p of n.
An odd Carmichael number has at least 3 prime factors.

Proof. “=⇒”: Let p be a prime divisor of n.
Assume p2|n. Then Mn contains a subgroup isomorphic with Mpe for

some e ≥ 2, hence by Proposition 18 in Appendix A.3 also a cyclic subgroup
of order p. This leads to the contradiction p |n− 1.

Since Mn contains a cyclic group of order p − 1 it has an element a of
order p− 1, and an−1 ≡ 1 (mod n), hence p− 1 |n− 1.

36



“⇐=”: Since n is squarefree by the chinese remainder theorem the mul-
tiplicative group Mn is the direct product of the cyclic groups F×p where p
runs through the prime divisors of n. Since all p− 1 |n− 1 the order of each
element of Mn divides n− 1.

Proof of the addendum: Let n be an odd Carmichael number. Suppose
n = pq with two primes p and q, say p < q. Then q − 1 | n − 1 = pq − 1,
hence p− 1 ≡ pq − 1 ≡ 0 (mod q − 1). This contradicts p < q. 3

37



3.2 Strong Pseudoprimes

For a stronger pseudoprime test we use an additional characteristic property
of primes.

Assume that n is odd, but not a prime nor a prime power. Then the
residue class ring Z/nZ contains non-trivial square roots of 1 besides ±1.
If we find one of these, then we have a proof that n is composite. But how
to find non-trivial square roots of 1 when the prime decomposition of n is
unknown?

Picking up an idea from Section 2.2 we decompose n− 1 as

(1) n− 1 = 2s · r with odd r

(and call s the 2-order of n − 1). Let a ∈ Mn. If n fails the pseudoprime
test to base a, then it is identified as composite. Otherwise the order of a in
the multiplicative group Mn divides n− 1. Consider the sequence

(2) ar mod n, a2r mod n, . . . , a2
sr mod n = 1 .

Possibly already ar ≡ 1 (mod n), and thus the complete sequence consists
of 1’s. Then we reject a without deciding on n. Otherwise the first 1 occurs
at a later position. Then the element before it must be a square root of 1,
but 6= 1. If we have bad luck, it is −1. In this case again we reject a without
a decision. But if we are lucky we have found a non-trivial square root of 1,
and identified n as a composite number.

Now let n be an arbitrary positive integer, and assume that n − 1 is
decomposed as in Equation (1). Then (after Selfridge ca 1975) we call n
a strong pseudoprime to base a, if

(3) ar ≡ 1 (mod n) or a2
kr ≡ −1 (mod n) for a k = 0, . . . , s− 1.

Lemma 4 (i) A prime number is a strong pseudoprime to each base that
is not a multiple of this prime.

(ii) A pseudoprime to base a is a forteriori a pseudoprime to base a.

Proof. (i) If n is prime and ar/≡ 1, then in the sequence (2) we choose k

maximal with 0 ≤ k < s and a2
kr/≡ 1 (mod n). Since ±1 are the only square

roots of 1 mod n we conclude a2
kr ≡ −1 (mod n).

(ii) The definition (3) immediately yields an−1 ≡ 1 (mod n). 3

Now we face an analoguous situation as in Section 2.3 with u = n − 1.
The set

Bu =

s⋃
t=0

{w ∈Mn | wr·2
t

= 1, wr·2
t−1

= −1 (if t > 0)}

38



exactly consists of the bases to which n is a strong pseudoprime, thus has
the property (En,u). These bases are called prime testimonials for n.

The Carmichael number n = 561 fails the test even with a = 2: We
have n− 1 = 560 = 16 · 35,

235 ≡ 263 (mod 561), 270 ≡ 166 (mod 561),

2140 ≡ 67 (mod 561), 2280 ≡ 1 (mod 561).

Hence 561 is unmasked as a composite number since 67/≡ ±1. The small-
est composite integer that is a strong pseudoprime to 2, 3, and 5, is
25326001 = 2251 · 11251. The only composite number < 1011 that is a strong
pseudoprime to the bases 2, 3, 5, and 7, is 3 215 031 751. This observations
make us hope that the strong pseudoprime test is suited for detecting primes.

Proposition 10 Let n ≥ 3 be odd. Then the following statements are equiv-
alent:

(i) n is prime.

(ii) n is a strong pseudoprime to each base a that is not a multiple of n.

Proof. “(i) =⇒ (ii)”: See Lemma 4 (i).
“(ii) =⇒ (i)”: By Lemma 4 (ii) n is a prime or satisfies the definition of

a Carmichael number, in particular λ(n) | n− 1 = u, and n is squarefree,
and a forteriori not a proper prime power. Since Bu = Mn by assumption,
Lemma 1 says that n is a prime power. Hence n is prime. 3

Corollary 2 If n is not prime, then the number of bases < n to which n is
a strong pseudoprime is at most ϕ(n)

2 .

Proof. If n is a Carmichael number, then this follows from Proposition 4.
Otherwise Au = {w ∈ Mn | wn−1 = 1} < Mn is a proper subgroup, and
Bu ⊆ Au. 3

With a little more care we even get the Rabin/Monier bound ϕ(n)
4

(Exercise).

39



3.3 Miller’s Primality Test

How can we exploit the criterion for strong pseudoprimes to sufficiently
many bases and construct a practically usable test? First we formulate the
algorithm for one base a and assess its cost.

Since we anyway compute an−1 by the binary power algorithm it makes
sense to compute the complete sequence of powers beginning with ar in a
passing strike. Then the effort is about the same as for the “weak” pseudo-
prime test alone. Thus the test for strong pseudoprimes to the base a runs
as follows:

Procedure sPPT(a)
[Strong pseudoprime test to base a ]
Input parameters:

n = the integer to be tested (odd ≥ 3)
a = base (in the integer interval [2 . . . n− 1])

Output parameters:
compo = a Boolean value with the meaning

TRUE: n is composite.
FALSE: The test has no definite result

[i. e. n is a strong pseudoprime to base a].
Instructions:

Compute s = 2-order of n− 1.
Compute r = odd part of n− 1.
Compute b = ar mod n (using the binary power algorithm).
Set k = 0.

[Loop: entry condition b = a2
kr mod n

The Boolean variable ‘done’, initiated with FALSE, decides
about repeating the loop.]
While not done:

If b = 1: set done = TRUE.
If k = 0: set compo = FALSE,
else: set compo = TRUE. [1 without preceding -1]

If b = n− 1 and k < s:
set compo = FALSE, done = TRUE.

If k = s and b 6= 1:
set compo = TRUE, done = TRUE.

In all other cases [k < s, b 6= 1, b 6= n− 1]
replace b by b2 mod n,
replace k by k + 1.

To assess the cost we break the procedure down into single steps
that each multiply two integers mod n. Computing ar mod n takes at most
2 · log2(r) steps. In each of the up to s loops we compute a square. Since

40



log2(n− 1) = s+ log2(r) we have to compute at most 2 · log2(n) products
mod n. Each of these squares needs at most N2 “primitive” integer multi-
plications where N is the number of places of n in the used representation
of the number system. Computing r takes s divisions by 2 that can be ne-
glected. Hence a coarse estimate of the total cost yields O(log(n)3) for a
single base.

Miller’s primality test is the sequence of strong peudoprime tests to
the bases 2, 3, 4, 5, . . .. This doesn’t look efficient: In the worst case we test a
true prime, then we run through all bases < n. However as Miller showed,
significantly less bases suffice—presupposed that the extended Riemann hy-
pothesis is true. In the next section we’ll see some explanation but without
complete proofs.

41



3.4 The Extended Riemann Hypothesis (ERH)

A (complex) character mod n is a function

χ : Z −→ C

with the properties:

1. χ has period n.

2. χ(xy) = χ(x)χ(y) for all x, y ∈ Z.

3. χ(x) = 0 if and only if ggT(x, n) > 1.

The characters mod n bijectively correspond to the group homomorphisms

χ̄ : Mn −→ C×

in a canonical way.
Examples are the trivial character χ(a) = 1 for all a that are coprime

with n, and the Jacobi character χ(a) = ( an) known from the theory of
quadratic reciprocity, see Appendix A.5.

A character defines an L-function by the Dirichlet series

Lχ(z) =
∞∑
a=1

χ(a)

az
.

This series converges absolutely and locally uniformly in the half-plane
{z ∈ C | Re(z) > 1} because ai·Im(z) = ei·ln(a)·Im(z) has absolute value 1,
hence ∣∣∣∣χ(a)

az

∣∣∣∣ =

∣∣∣∣ χ(a)

aRe(z) · ai·Im(z)

∣∣∣∣ =
1

aRe(z)
or = 0.

It admits an analytic continuation to the right half-plane Re(z) > 0 as a
holomorphic function, except for the trivial character where 1 is a simple
pole.

The function Lχ has the Riemann property if all its zeroes in the strip
0 < Re(z) ≤ 1 are on the line Re(z) = 1

2 . The Riemann hypothesis states
just this property for the Riemann zeta function, the extended Riemann
hypothesis (ERH), for all L-functions for characters mod n.

The zeta function is defined for Re(z) > 1 by

ζ(z) :=

∞∑
a=1

1

az
=

∏
p prime

1

1− 1
pz

where the last equation is Euler’s product formula. Hence for the trivial
character χ1 mod n we have:

Lχ1(z) =
∑

gcd(a,n)=1

1

az
= ζ(z) ·

∏
p|n prime

(
1− 1

pz

)
;

and this L-function has the same zeroes as ζ in Re(z) > 0.

42



Proposition 11 (Ankeney/Montgomery/Bach) Let c = 2/ ln(3)2 =
1.65707 . . .. Let χ be a nontrivial character mod n whose L-function Lχ has
the Riemann property. Then there is a prime p < c · ln(n)2 with χ(p) 6= 1.

We omit the proof.

Corollary 1 Suppose ERH is true. Let G <Mn be a proper subgroup. Then
there is a prime p with p < c · ln(n)2 whose residue class modn is in the
complement Mn −G.

Proof. There exists a nontrivial homomorphism Mn/G −→ C×, thus a char-
acter mod n with G ⊆ kerχ ⊆Mn. 3

Proposition 12 (Miller) Let the integer n ≥ 3 be odd and a strong pseu-
doprime to all prime bases a < c · ln(n)2 with c as in Proposition 11. Assume
that the L-function of each character for each divisor of n has the Riemann
property. Then n is prime.

Proof. We first show that n is squarefree.
Assume p2 |n for some prime p. The multiplicative group Mp2 is cyclic

of order p(p− 1). In particular the homomorphism

Mp2 −→Mp2 , a 7→ ap−1 mod p2,

is nontrivial. Its image is a subgroup G <Mp2 of order p, and is cyclic, hence
isomorphic with the group of p-th roots of unity in C. The composition of
these two homomorphisms yields a character mod p2. Thus Proposition 11
gives a prime a < c · ln(p2)2 with ap−1/≡ 1 mod p2. The order of a in Mp2

divides p(p − 1). Suppose an−1 ≡ 1 mod n. Then the order also divides
n − 1. Since p is coprime with n − 1 the order divides p − 1, contradicting
the definition of a. Hence an−1/≡ 1 mod n, and this in turn contradicts the
strong pseudoprimality of n. Therefore n is squarefree.

Next we show that n doesn’t have two different prime factors.
Assume p and q are two different prime divisors of n. Denote the 2-order

of an integer x by ν2(x). We may assume that ν2(p− 1) ≥ ν2(q − 1). Let

r =

{
p, if ν2(p− 1) > ν2(q − 1),
pq, if ν2(p− 1) = ν2(q − 1).

Again by Proposition 11 there is an a < c · ln(r)2 with (ar ) = −1. If u is the

odd part of n − 1, and b = au, then also ( br ) = −1, in particular b 6= 1. By

strong pseudoprimality there is a k with b2
k ≡ −1 mod n. Thus b has order

2k+1 in Mp and in Mq. In particular 2k+1 | q − 1.

43



In the case ν2(p − 1) > ν2(q − 1) even 2k+1 | p−12 . We conclude

b(p−1)/2 ≡ 1 (mod p), but this contradicts ( bp) = ( br ) = −1 by Euler’s cri-
terion for quadratic residues.

In the case ν2(p − 1) = ν2(q − 1) we have ( bp)( bq ) = ( br ) = −1.

Thus (without restriction) ( bp) = −1, ( bq ) = 1. By Euler’s criterion

b(q−1)/2 ≡ 1 (mod q), hence 2k+1 | q−12 , k + 2 ≤ ν2(q − 1) = ν2(p− 1), hence

also b(p−1)/2 ≡ 1 (mod p), contradicting ( bp) = −1. 3

Therefore for Miller’s primality test it suffices to perform the strong
pseudoprime test for all prime bases a < c · ln(n)2. This makes total costs
of O(log(n)5).

As an example, for a 512-bit integer, that is n < 2512, testing the 18698
primes < 208704 is sufficient. Despite its efficiency this procedure takes some
time. Therefore in practice this test is modified in way that is (in a sense
yet to specify) not completely exact, but much faster. This is the subject of
the next section.

44



3.5 Rabin’s Probabilistic Primality Test

Rabin transferred an idea of Solovay and Strassen to Miller’s test. As
it later turned out Selfridge had used the method already in 1974.

If we choose a random base a in [2 . . . n − 1], then n “in general” fails
the strong pseudoprime test to base a except when it is prime. But what
means “in general”? How large is the probability? To answer this question
we look at the corollary of Proposition 10 where the tighter bound 1

4 was
stated without proof.

Note that the bound 1
4 is sharp. To see this we consider integers of the

form
n = (1 + 2t)(1 + 4t)

with odd t (and assume that p = 1 + 2t and q = 1 + 4t are prime—example:
t = 24969, p = 49939, q = 99877). Then n− 1 = 2r with r = 3t+ 4t2, and

Bu = {a | ar ≡ 1 (mod n)} ∪ {a | ar ≡ −1 (mod n)}.

Since gcd(r, p− 1) = gcd(3t+ 4t2, 2t) = t = gcd(r, q − 1), each of these two
congruences has exactly t2 solutions. Hence #Bu = 2t2,

#Bu
n− 1

=
2t2

2 · (3t+ 4t2)
=

t

3 + 4t
=

1

4 + 3
t

.

However most composite integers don’t even come close to this bound 1
4 .

In general assume we are given a family (M(n))n≥1 of sets
M(n) ⊆ [1 . . . n− 1] and a real number ε ∈]0, 1[ with

1. M(n) = [1 . . . n− 1] if n is prime,

2. #M(n) ≤ ε · (n− 1) for all sufficiently large odd composite integers n.

Moreover we assume that the property a ∈M(n) is efficiently decideable for
all a ∈ [1 . . . n − 1], i. e. with costs that grow at most polynomially with
log(n). Then we have a corresponding (abstract) pseudoprime test:

1. Choose a random a ∈ [1 . . . n− 1].

2. Check whether a ∈M(n).

3. Output:

(a) If no: n is composite.

(b) If yes: n is pseudoprime to a.

The corresponding probabilistic primality test consists of a series of
k of these pseudoprime tests to independently chosen bases a (note that
this allows for accidental repetitions). If a 6∈ M(n), we call a a witness for

45



compositeness of n. If always a ∈ M(n) (we find no witnesses), then n is
almost certainly a prime. We may assign an “error probability” δ to this
event. This is computed in the following way (no it is not = εk):

Consider the set of odd r-bit integers, that is odd positive integers < 2r.
Let X be the subset of composite numbers, and Yk, the subset of integers
that pass the first k of a given series of independent (abstract) pseudoprime
tests. The probability that a composite integer makes it into this subset is
the conditional probability P (Yk|X) ≤ εk.

Nevertheless more important for the practical application is the “con-
verse” probability δ = P (X|Yk) that a number n that passed all the tests is
still composite. This probability is assessed using Bayes’ formula:

P (X|Yk) =
P (X) · P (Yk|X)

P (Yk)
≤ P (Yk|X)

P (Yk)
≤ 1

q
· εk ≤ r · ln(2) · εk,

where we also used the density of primes estimated by the prime number
theorem:

P (Yk) ≥ P (prime) =: q ≥ 1

r · ln(2)

(the latter inequality being rather tolerant since we consider only odd num-
bers). Thus the “error probability” δ = P (X|Yk) might be larger than εk.
We can (and should) reduce it by restricting the set we search for primes,
thereby enlarging P (Yk). For example before starting the series of pesudo-
prime tests we could try to divide by all primes say < 100r.

For Rabin’s primality test we take M(n) as the set of bases n is a strong

pseudoprime to, and ε = 1
4 . If n passes 25 single tests then it is prime with

a quite small error probability. The probability that an exact computation
produces a false result due to a hardware nor software error is larger than
the error probability of Rabin’s algorithm. Knuth even doubts whether a
future published proof of the extended Riemann hypothesis might ever be as
trustworthy. Nevertheless from a mathematical viewpoint we are unsatisfied
when we can’t be sure that we really found a prime.

For further information on the error probability of a probabilistic pri-
mality test read

• S. H. Kim/C. Pomerance: The probability that a random probable
prime is composite. Math Comp. 53 (1989), 721–741.

• Alfred J. Menezes, Paul C. van Oorschot, Scott A. Van-
stone: Handbook of Applied Cryptography. CRC Press, Boca Raton
1997, p. 147.

46



3.6 RSA and Pseudoprimes

To use RSA we need primes. The probabilistic Rabin primality test solves
the problem of finding them in a highly efficient, but not perfectly satisfying
way: We could catch a “wrong” prime. What could happen in this case?

For an analysis of the situation let n = pq be a putative RSA module
where p and q are not necessarily primes, but at least coprime. For the
construction of the exponents d, e with

de ≡ 1 (mod λ(n)) (or (mod ϕ(n)))

we use the possibly wrong values

ϕ̃(n) := (p− 1)(q − 1), λ̃(n) := kgV(p− 1, q − 1)

instead of the true values ϕ(n) and λ(n) of the Euler and Carmichael
functions.

How do the RSA algorithms work with the “false” values? Let a ∈ Z/nZ
be a plaintext. As usual the case gcd(a, n) > 1 leads to a decomposition
of the module, we ignore it because of its extremely low probability. So we
assume gcd(a, n) = 1, and ask whether

ade−1
?≡ 1 (mod n)

holds. By the chinese remainder theorem this holds if and only if

ade−1 ≡ 1 (mod p) and (mod q) .

A sufficient condition is

ap−1 ≡ 1 (mod p) and aq−1 ≡ 1 (mod q) .

Thus a message a might be incorrectly decrypted only if p or q is not a
pseudoprime to base a. Hence:

• If instead of a prime factor p we use a Carmichael number, then
RSA works correctly despite the “false” parameters, at least if a is
coprime with n, though the (extremely low) probability of accidentally
factorizing the module n by catching an inept plaintext a is slightly
enlarged.

• Otherwise p is not a prime nor a Carmichael number. Then there is
a small chance that a message cannot be correctly decrypted.

For this reason many implementations of RSA execute a few trial encryp-
tions and decryptions after generating a key pair relying on the probabilistic
Rabin test. But the effect of this additional step simply boils down to a few
additional pseudoprime tests. If something goes wrong, the module is re-
jected.

It is unknown whether this case yet occured in this universe.

47



3.7 The AKS Primality Test

Miller reduced the quest for an efficient deterministic primality test to
the extended Riemann hypothesis. In August 2002 the three Indian mathe-
maticians Manindra Agrawal, Neeraj Kayal und Nitin Saxena surprised
the scientific community with a complete proof that relied on an astonish-
ingly simple deterministic algorithm. It immediately was baptized “AKS
primality test”. The fastest known version costs O(log(n)6).

Proposition 13 (Basic criterion) Let a, n ∈ Z be coprime, n ≥ 2. Then
the following statements are equivalent:

(i) n is prime.

(ii) (X + a)n ≡ Xn + a (mod n) in the polynomial ring Z[X].

Proof. From the binomial theorem we have

(X + a)n =
n∑
i=0

(
n

i

)
an−iXi

in Z[X].
“(i) =⇒ (ii)”: If n is prime, then n|

(
n
i

)
for i = 1, . . . , n − 1, hence

(X + a)n ≡ Xn + an (mod n). By Fermat’s theorem an ≡ a (mod n).
“(ii) =⇒ (i)”: If n is composite, then we choose a prime q|n, and k with

qk|n and qk+1 6 |n. Then q 6= n and

qk 6 |
(
n

q

)
=
n · · · (n− q + 1)

1 · · · q
.

Hence the coefficient of Xq in (X + a)n is 6= 0 in Z/nZ. 3

Remarks

1. Looking at the absolute term in (ii) we see that the basic criterion
generalizes Fermat’s theorem.

2. Consider the ideal qr := (n,Xr − 1) E Z[X] for r ∈ N. If n is prime,
then (X + a)n ≡ Xn + a (mod qr). This shows:

Corollary 1 If n is prime, then in the polynomial ring Z[X]

(X + a)n ≡ Xn + a (mod qr)

for all a ∈ Z with gcd(a, n) = 1 and all r ∈ N.

48



Applying the basic criterion as a primality test in a naive way would
cost about log2 n multiplications of polynomials in Z/nZ[X] using the bi-
nary power algorithm. But these multiplications become more and more
expensive, in the last step we have to multiply two polynomials of degree
about n

2 for an expense of size about n. The corollary bounds the degrees
by r − 1, but its condition is only necessary, not sufficient.

The sticking point of the AKS algorithm is a converse of the corollary
that says that we need to try only “few” values of a, however sufficiently
many, for a suitable fixed r:

Proposition 14 (AKS criterion, H. W. Lenstra’s version) Let n be
an integer ≥ 2. Let r ∈ N be coprime with n. Let q := ordr n be the order
of n in the multiplicative group Mr = (Z/rZ)×. Furthermore let s ≥ 1 be an
integer with gcd(n, a) = 1 for all a = 1, . . . , s and(

ϕ(r) + s− 1

s

)
≥ n2d·b

√
ϕ(r)
d
c

for each divisor d|ϕ(r)q . Assume

(X + a)n ≡ Xn + a (mod q) for all a = 1, . . . s

with the ideal q = qr = (n,Xr − 1) E Z[X]. Then n is a prime power.

We reproduce the proof by D. Bernstein, breaking it up into a series
of lemmas and corollaries.

Lemma 5 For all a = 1, . . . s and all i ∈ N

(X + a)n
i ≡ Xni + a (mod q).

Proof. We reason by induction over i. In

(X + a)n = Xn + a+ n · f(X) + (Xr − 1) · g(X)

we substitute X 7→ Xni in Z[X]:

(X + a)n
i+1 ≡ (Xni + a)n = Xni·n + a+ n · f(Xni) + (Xni·r − 1) · g(Xni)

≡ Xni+1
+ a (mod q),

since Xnir−1 = (Xr)n
i−1 = (Xr−1)(Xr·(ni−1)+ · · ·+Xr+1) is a multiple

of Xr − 1. 3

Now let p|n be a prime divisor. Claim: n is a power of p.
We enlarge the ideal q = (n,Xr − 1) E Z[X] to q̂ := (p,Xr − 1) E Z[X].

Then the identity from Lemma 5 holds also mod q̂, and since we now calcu-
late mod p, we even have:

49



Corollary 2 For all a = 1, . . . s and all i, j ∈ N

(X + a)n
ipj ≡ Xnipj + a (mod q̂).

Let H := 〈n, p〉 ≤ Mr be the subgroup generated by the residue classes
n mod r and p mod r. Let

d := #(Mr/H) =
ϕ(r)

#H
.

From q = ordr n |#H we have d | ϕ(r)q . Hence d satisfies the precondition of
Proposition 14. For the remainder of the proof we fix a complete system of
representants {m1, . . . ,md} ⊆Mr of Mr/H. Corollary 2 then extends to

Corollary 3 For all a = 1, . . . s, all k = 1, . . . , d, and all i, j ∈ N

(Xmk + a)n
ipj ≡ Xmkn

ipj + a (mod q̂).

Proof. We use the same trick as in Lemma 5 and substitute X 7→ Xmk in
Z[X]:

(X + a)n
ipj = Xnipj + a+ p · f(X) + (Xr − 1) · g(X) in Z[X],

(Xmk + a)n
ipj = Xmkn

ipj + a+ p · f(Xmk) + (Xmk·r − 1) · g(Xmk),

and from this the proof is immediate. 3

The products nipj ∈ N with 0 ≤ i, j ≤ b
√

ϕ(r)
d c are bounded by

1 ≤ nipj ≤ n2·b
√
ϕ(r)
d
c.

The number of such pairs (i, j) ∈ N2 is (b
√

ϕ(r)
d c + 1)2 > ϕ(r)

d , and all

nipj mod r are contained in the subgroup H with #H = ϕ(r)
d . Hence there

are different (i, j) 6= (h, l) with

nipj ≡ nhpl (mod r) .

We even have i 6= h—otherwise pj ≡ pl (mod r), hence p|r. Thus we have
shown the first part of the following lemma:

Lemma 6 There exist i, j, h, l with 0 ≤ i, j, h, l ≤ b
√

ϕ(r)
d c and i 6= h such

that for t := nipj, u := nhpl, the congruence t ≡ u (mod r) is satisfied, and

|t− u| ≤ n2·b
√
ϕ(r)
d
c − 1, as well as

(Xmk + a)t ≡ (Xmk + a)u (mod q̂)

for all a = 1, . . . , s and all k = 1, . . . d.

50



Proof. The latter congruence follows from Xt = Xu+cr ≡ Xu (mod Xr−1),
hence

(Xmk + a)t ≡ Xmkt + a ≡ Xmku + a ≡ (Xmk + a)u (mod q̂),

for all a and k. 3

Now r and n are coprime, and p is a prime divisor of n, thus Xr−1 has no
multiple zeroes in an algebraic closure of Fp. Hence it has r distinct zeroes,
and these are the r-th roots of unity mod p. They form a cyclic group by
Proposition 2. Let ζ be a generating element, that is a primitive r-th root
of unity. For one of the irreducible divisors h ∈ Fp[X] of Xr − 1 we have
h(ζ) = 0. Let

K = Fp[ζ] ∼= Fp[X]/hFp[X] ∼= Z[X]/ˆ̂q

with the ideal ˆ̂q = (p, h) E Z[X]. Thus we have an ascending chain of ideals

q = (n,Xr − 1) ↪→ q̂ = (p,Xr − 1) ↪→ ˆ̂q = (p, h) E Z[X]

and a corresponding chain of surjections

Z[X] −→ Z[X]/q −→ Fp[X]/(Xr − 1) −→ K = Fp[ζ] ∼= Fp[X]/hFp[X].

Lemma 7 With the notations of Lemma 6 we have in K:

(i) (ζmk + a)t = (ζmk + a)u for all a = 1, . . . , s and all k = 1, . . . d.

(ii) If G ≤ K× is the subgroup generated by the ζmk + a 6= 0, then gt = gu

for all g ∈ Ḡ := G ∪ {0}.

Proof. (i) follows from Lemma 6 using the homomorphism Z[X] −→ K,

X 7→ ζ with kernel ˆ̂q ⊇ q̂.
(ii) is a direct consequence from (i). 3

The X + a ∈ Fp[X] for a = 1, . . . s are pairwise distinct irreducible
polynomials since p > s by the premises of Proposition 14. Thus also all
products

fe :=

s∏
a=1

(X + a)ea for e = (e1, . . . , es) ∈ Ns

are distinct in Fp[X]. We consider their images under the map

Φ: Fp[X] −→ Kd,

f 7→ (f(ζm1), . . . , f(ζmd)) .

Lemma 8 The images Φ(fe) ∈ Kd of the fe with
deg fe =

∑s
a=1 ea ≤ ϕ(r)− 1 are pairwise distinct.

51



Proof. Assume Φ(fc) = Φ(fe). By Corollary 3 for k = 1, . . . , d

fc(X
mk)n

ipj =
s∏

a=1

(Xmk + a)n
ipjca ≡

s∏
a=1

(Xmkn
ipj + a)ca

= fc(X
mkn

ipj ) (mod q̂)

and likewise
fe(X

mk)n
ipj ≡ fe(Xmkn

ipj ) (mod q̂) ,

a forteriori mod ˆ̂q. Applying Φ to the left-hand sides yields

fc(X
mkn

ipj ) ≡ fe(Xmkn
ipj ) (mod ˆ̂q) .

Thus for the difference g := fc − fe ∈ Fp[X] we have g(Xmkn
ipj ) ∈ hFp[X]

for all k = 1, . . . , d. Let b ∈ [1 . . . r − 1] be coprime with r, hence represent
an element of Mr. Then b is contained in one of the cosets mkH of Mr/H.
Thus there exist k, i, and j with b ≡ mkn

ipj (mod r). Hence

g(Xb)− g(Xmkn
ipj ) ∈ (Xr − 1)Fp[X] ⊆ hFp[X],

hence g(Xb) ∈ hFp[X], and g(ζb) = 0. Thus g has the ϕ(r) different zeroes
ζb in K. But the degree of g is < ϕ(r). Hence g = 0, and fc = fe. 3

Corollary 4

#Ḡ ≥
(
ϕ(r) + s− 1

s

)1/d

≥ |t− u|+ 1.

Proof. There are
(
ϕ(r)+s−1

s

)
options for choosing the exponents (e1, . . . , es)

as in Lemma 8. Since all Φ(fe) ∈ Ḡd, we conclude

#Ḡd ≥
(
ϕ(r) + s− 1

s

)
≥ n2d·b

√
ϕ(r)
d
c

by the premises of Proposition 14, hence

#Ḡ ≥ n2·b
√
ϕ(r)
d
c ≥ |t− u|+ 1

by Lemma 6. 3

Now we can complete the proof of Proposition 14: Since gt = gu for all
g ∈ Ḡ ⊆ K, the polynomial X |t−u| has more than |t− u| zeroes in K. This
is possible only if t = u. By the definition of t and u (in Lemma 6) n is a
power of p.

This proves Proposition 14. 3

52



3.8 The AKS Algorithm

We describe the algorithm in the version given by Lenstra/Bernstein.
It is not trimmed to uttermost efficiency but aims at a transparent proof of
polynomiality.

Input

An integer n ≥ 2.
We measure the length of the input by the number ` of bits in the

representation of n to base 2,

` =

{
dlog2 ne, if n is not a power of 2,

k + 1, if n = 2k.

Output

A Boolean value, coded as “COMPOSITE” or “PRIME”.

Step 1

Catch powers of 2:

• If n = 2: output “PRIME”, end.

• (Else) if n is a power of 2: output “COMPOSITE”, end.

We recognize this case by log2 n being an integer.

From now on we may assume that n is not a power of 2, and ` = dlog2 ne.

Step 2

We precompute a big number N ∈ N as

N = 2n · (n− 1)(n2 − 1)(n3 − 1) · · · (n4`2 − 1) = 2n ·
4`2∏
i=1

(ni − 1).

This number is huge, but more importantly:

• The number 4`2 of multiplications is polynomial in `.

• From

N ≤ 2n · n
∑4`2

i=1 i = 2n · n
4`2(4`2+1)

2 ≤ 2n · n16`4 ,
we conclude that

k := dlog2Ne ≤ 1 + (16`4 + 1) · `

is polynomial in `.

We repeatedly use this integer k in the following. We have N < 2k, and k is
the smallest positive integer with this property.

53



Requirements

We have to find positive integers r and s that satisfy the following require-
ments:

1. r and n are coprime.

2. The integer interval [1, . . . , s] contains no prime divisor of n.

3. For each divisor d | ϕ(r)q , where q = ordr n,(
ϕ(r) + s− 1

s

)
≥ n2d·b

ϕ(r)
d
c.

4. The primality criterion: For all a = 1, . . . , s

(X + a)n ≡ Xn + a (mod (n,Xr − 1)).

Step 3

We choose r as the smallest prime that doesn’t divide N . Then r also doesn’t
divide n. In particular requirement 1 is satisfied.

Why can we find r with polynomial cost?
By one of the extensions of the prime number theorem, equation (2), we

have ∏
p≤2k, p prime

p = eϑ(2k) > 2k > N.

Thus not all primes < 2k divide N .
With costs that are at most quadratic in 2k, and thus polynomial in `,

we get the list of all primes ≤ 2k (using Eratosthenes’ sieve).

Step 4

Set s := r. Then requirement 2 is not necessarily satisfied. Hence we run
through the list of primes p < r that is known from step 3:

• If p = n: Output “PRIME”, end.

[This can happen only for “small” n since n grows exponentially with
` but r only polynomially.]

• (Else) If p|n: Output “COMPOSITE”, end.

If we reach this point in the algorithm, then s satisfies requirement 2.

54



Requirement 3

To prove requirement 3 we start with the observation that q := ordr n > 4`2.

Otherwise ni ≡ 1 (mod r) for some i with 1 ≤ i ≤ 4`2, hence
r | ni − 1 |N , contradiction.

Now assume d divides ϕ(r)
q . Then

d ≤ ϕ(r)

q
<
ϕ(r)

4`2
,

2d · b
√
ϕ(r)

d
c ≤ 2d ·

√
ϕ(r)

d
=
√

4dϕ(r) <
ϕ(r)

`
<

ϕ(r)
2log n

,

n2d·b
√
ϕ(r)
d
c < n

ϕ(r)
2logn = 2ϕ(r).

On the other hand ϕ(r) ≥ 2, so(
ϕ(r) + s− 1

s

)
=

(
ϕ(r) + r − 1

r

)
=

(
2ϕ(r)

ϕ(r) + 1

)
≥ 2ϕ(r).

Hence requirement 3 is satisfied.

Step 5

Next we check requirement 4,

(X + a)n ≡ Xn + a (mod (n,Xr − 1))

in a loop for a = 1, . . . , r. The number of iterations is at most r, thus ≤ 2k,
hence polynomial in `. During each iteration we have two binary power
computations, hence a total of at most 4` multiplications, the factors being
polynomials of degree < r—polynomial in `—with coefficients of size < n,
hence of bitlength polynomial in `.

• If an a violates requirement 4, then output “COMPOSITE”, end.

Otherwise all a satisfy requirement 4, therefore n is a prime power by the
AKS criterion.

Step 6

Finally we must decide whether n is a proper prime power. Since the primes
≤ r don’t divide n, we only have to check in a loop for t with 1 < t < logr n:

• If t
√
n is integer: Output “COMPOSITE”, end.

The number of iterations is ≤ `, and the test in each single iteration also
takes polynomial cost, if we compute b t

√
nc by a binary search in the interval

[1 . . . n− 1].

55



• If the algorithm reaches this point, output “PRIME”, end.

This completes the proof of:

Theorem 1 The AKS algorithm decides the primality of n with costs that
depend polynomially on log n.

56



Chapter 4

The Discrete Logarithm with
Cryptographic Applications

Computing discrete logarithms is believed—like factoring large integers—to
be a hard problem. This serves as basis of many cryptographic procedures.

A useful aspect of most of these procedures is that they rely only on
the group property of the multiplicative groups of the residue class rings
of integers. Therefore they often have an immediate translation to other
groups such as elliptic curves. Should discrete logarithms for residue class
rings happen to be efficiently computable there remains a chance that the
procedures remain secure for other groups.

57



4.1 The Discrete Logarithm

Let G be a group (multiplicatively written) and a ∈ G be an element of
order s (maybe ∞). Then the exponential function to base a in G

expa : Z −→ G, x 7→ ax,

is a group homomorphism (since ax+y = axay) and has period s (since
ax+s = axas = ax if s < ∞). By the homomorphy theorem the induced
homomorphism h

Z -expa 〈a〉 ⊆ G

?

Z/sZ
�
�
�
��

h
�
�

�
�	

loga

is an isomorphism, hence has an inverse map

loga : 〈a〉 −→ Z/sZ

defined on the cyclic subgroup 〈a〉 ⊆ G, the discrete logarithm to base a
that is an isomorphism of groups. [The case s =∞ fits into this scenario for
sZ = 0 and Z/sZ = Z.]

We apply this to the multiplicative group Mn: For an integer a ∈ Z with
gcd(a, n) = 1 the exponential function mod n to base a,

expa : Z −→Mn, x 7→ ax mod n,

has period s = ord a|λ(n)|ϕ(n). The inverse function

loga : 〈a〉 −→ Z/sZ

is the discrete logarithm mod n to base a.
We know of no efficient algorithm that computes the discrete logarithm

loga for large s = ord a, or to invert the exponential function—not even a
probabilistic one.

Informal definition: A function f : M −→ N is called one-
way function if for “almost all” images y ∈ N there is no
efficient way to compute a pre-image x ∈M with f(x) = y.

This definition can be given a mathematically precise (although
not completely satisfying) formulation in terms of complexity
theory, see Appendix B.

58



Discrete logarithm assumption: The exponential function expa mod n
is a one-way function for “almost all” bases a.

Note that this is an unproven conjecture.

The most important special case is a prime module p ≥ 3, and a primitive
element a ∈ [2, . . . , p− 2], i. e., ord a = p− 1.

Z -expa F×p

?

Z/(p− 1)Z
�
�
�
��

bij
�
�

�
�	

loga

To make the computation of discrete logarithms hard in practice we have
to choose a prime module p of about the same size as an RSA module. Thus
according to the state of the art 1024-bit primes are completely obsolete,
2048-bit primes are safe for short-time applications only.

The book by Shparlinski (see the references for these lecture notes)
contains some lower bounds for the complexity of discrete logarithm com-
putations in various computational models.

59

http://www.staff.uni-mainz.de/pommeren/Cryptology/References.html


4.2 Diffie-Hellman Key Exchange

We treat some exemplary applications that provide astonishingly elegant
solutions for seemingly unsolvable problems under the discrete logarithm
assumption.

Imagine A (Alice) and B (Bob) want to exchange a key for a symmetric
cipher. In 1976 Diffie and Hellman proposed the following protocol whose
security relies on the dicrete logarithm assumption:

1. A and B (publicly) agree on a prime p and a primitive element a mod p.

2. A generates a random integer x, computes u = ax mod p, and sends u
to B.

3. B generates a random integer y, computes v = ay mod p, and sends v
to A.

4. A computes k = vx mod p, and B computes k = uy mod p.

Now A and B share a secret k that may be used as key. The fact that A and
B compute the same key k lies in the equation

vx ≡ axy ≡ uy (mod p).

An eavesdropper can intercept the values p, a, u, and v. But this doesn’t
enable her to efficiently compute k, or x, or y.

This protocol realizes a kind of hybrid encryption. A difference with a
“proper” asymmetric cipher concerns the need for synchronization between
A and B, preventing spontaneous messages (for example by e-mail that
follows an asynchroneous protocol).

An attacker who is able to efficiently compute discrete logarithms is
also able to efficiently break the Diffie-Hellman protocol. It is unknown
whther the converse also holds.

The British Secret Service CESC knew the procedure already in 1974
but of course kept it secret.

Here is a mathematical model for a somewhat more abstract protocol:

1. A and B (publicly) agree on a set X, an element a ∈ X, and a com-
mutative subsemigroup H ⊆ Map(X,X).

2. A chooses a random map ϕA ∈ H, computes u = ϕA(a), and sends u
to B.

3. B chooses a random map ϕB ∈ H, computes v = ϕB(a), and sends v
to A.

4. A computes ϕA(v), and B computes ϕB(u).

60



Then A and B share the secret value

k = ϕA(v) = ϕA(ϕB(a)) = ϕB(ϕA(a)) = ϕB(u)

and may use it as key for their secret communication—at least if an attacker
has no method to derive ϕA, ϕB, or k from the entities X, a, u, and v she
knows or intercepts.

For the adaption of this protocol to elliptic curves an even more abstract
scenario is useful that is visualized by a commutative diagram as follows:

61



4.3 The Man in the Middle

In this section we consider a communication protocol with asymmetric en-
cryption, and note that the same attack works against the Diffie-Hellman
key exchange. The basic problem is that an attacker can plant his own key
into the procedure. In some more detail:

Suppose A = Alice and B = Bob want to exchange messages. First A
sends her public key EA to B, and B sends his public key EB to A.

The attacker E = Eve who only listens cannot use these public data for
eavesdropping. However the attacker M = Mallory, the “man in the middle”
who actively forges messages, intercepts the key exchange, and each time
replaces the intercepted public key by his own key EM . From now on M is
able to monitoring and even counterfeiting the complete communication of
A and B. Figure 4.1 illustrates the attack.

&%
'$

M

&%
'$

A &%
'$

B

�
��1

�
��2

�
��3

�
��4
� -

6 6

(“I’m A”, EA) (“I’m B”, EB)

(“I’m B”, EM ) (“I’m A”, EM )

Figure 4.1: The man in the middle

There are different ways to prevent this attack. But all of them make
asymmetric encryption more complex. The usual way is the use of certifi-
cates: The public keys of all participants of a communication network get a
digital signature by a “trusted third party”.

Definition. A certificate is a public key signed by a trusted third party.

Mnemonic. A key exchange can be secure from the man in the middle only
if the partners are mutually authenticated.

Exercise. What information in the Diffie-Hellman protocol is suited to
be used in a certificate?

62



4.4 Secret Communication without Key Exchange

Even without exchanging keys in advance a confidential conversation is pos-
sible. (Note that this protocol also is not secure from the man in the middle.)

An analogy from veryday life illustrates the idea:

• Alice puts her message in a box and locks it with a padlock whose key
is hers and not available to anyone else.

• Of course Bob is unable to open the box. Instead he locks it with
another padlock of his own. He returns the doubly locked box to Alice.

• Alice removes her padlock and returns the box that is locked with
Bob’s padlock only.

• Bob removes his padlock, opens the box, and reads the message.

This cryptographic protocol is called the Massey-Omura scheme or
Shamir’s no-key algorithm. It may be implemented with the discrete expo-
nential function. Its security relies on the discrete logarithm assumption:

The procedure uses a public large prime number p. Alice and Bob
each choose a pair of exponents d and e with ed ≡ 1 (mod p − 1), hence
ade ≡ a (mod p) for all integers a ∈ Z. Each one keeps both of their expo-
nents secret.

Then Alice sends a message a to Bob according to the following protocol:

����
A ����

B

aeA mod p -

aeAeB mod p�

aeAeBdA = aeB mod p -

aeBdB = a mod p

An attacker who is able to compute discrete logarithms is also able to
compute the exponent eB from the intercepted ciphertexts aeA mod p and
aeAeB mod p. From this she computes dB by congruence division and solves
for a.

This is the only known attack. Hence the protocol is secure from Eve as
long as the discrete logarithm assumption holds. To be secure from Mallory
the protocol must be supplemented by an authentication phase.

63



4.5 ElGamal Cipher—Idea

The ElGamal cipher is an asymmetric cipher—or more precisely a hybrid
cipher—that also relies on the complexity of the discrete logarithm.

The basic public parameters are a prime p and an element g ∈ [2 . . . p−2].
The order of g in F×p should be high, preferably g should be a primitive
element mod p.

p and g may be shared by all participants but also may be indi-
vidually chosen.

Each participant chooses a random integer

d ∈ [2 . . . p− 2]

as private key, und computes

e = gd mod p

as corresponding public key. Computing d from e is computing a discrete
logarithm, hence presumably hard.

The definitioon of the cipher needs one more idea: How to transform a
message a in such a way that it can be reconstructed only with knowledge
of d?

The naive idea of sending ea = gda mod p is useless—knowing
d doesn’t help with decrypting a. Also sending r = ga mod p is
useless—the receiver can compute rd = ea mod p but not a.

The idea is to first generate a message key to be used with a hybrid
procedure:

• Alice chooses a random k ∈ [2 . . . p − 2]. As key she will use
K = ek mod p where e is the Bob’s public key, thus Alice can com-
pute K.

• To share the key K with Bob Alice sends the key information
r = gk mod p together with the encrypted message.

• Bob computes rd = gkd = ek = K mod p using his private key d.

As symmetric component of the hybrid encryption the shift cipher in F×p is
used with K as one-time key. So Alice has to generate a new key K for each
plaintext block and to send the corresponding key information, doubling the
length of the message.

Thus, after generating the key K and the key information r:

• the formula for encryption is c = Ka mod p,

• and the message to be sent is (c, r).

Bob computes the key K from r, and then decrypts

• a = K−1c mod p by congruence division.

64



4.6 Computing Discrete Logarithms

The classical algorithm for computing discrete logarithms is the index cal-
culus by Adleman—“index” was Gauss’ denotation of the discrete loga-
rithm.

Let p ≥ 3 be a prime and a be a primitive element for p.
The naive algorithm for computing loga y for y ∈ F×p is punished by

exponentially growing costs, as usual. It computes a, a2, a3, . . . in order until
x with ax = y is found. In the mean it needs p

2 − 1 trials, in the worst case,
p− 2 (omitting the trivial value y = 1).

Preliminary Steps

For given p and a we need to execute this precomputation only once.
Let p1 = 2, p2 = 3, . . . , pk be the first k primes.
If we randomly choose an exponent r, then it could happen that ar mod

p—considered as integer ∈ Z—has only prime divisors in {p1, . . . , pk}. After
h strokes of luck we have a system of h equations:

ar1 mod p = pα11
1 · · · pα1k

k ,

...

arh mod p = pαh11 · · · pαhkk .

in Z and a forteriori in Fp. Taking logarithms results in a system of linear
equations over the ring Z/(p− 1)Z for the k unknowns loga pi:

r1 = α11 · loga p1 + · · ·+ α1k · loga pk,

...

rh = αh1 · loga p1 + · · ·+ αhk · loga pk.

From Chapter I we know efficient algorithms for solving it. If h is sufficiently
large—at least h ≥ k—, then we can compute loga p1, . . . , loga pk.

The random search for “strokes of luck” makes the precomputation prob-
abilistic.

Computation

Let y ∈ F×p be given. We want to compute loga y.
For a randomly chosen exponent s it could happen that

y · as mod p = pβ11 · · · p
βk
k

in Z. Then we easily compute

loga y = β1 · loga p1 + · · ·+ βk · loga pk − s .

65



This observation reduces the computation of the discrete logarithm of any
element to the computation for the elements of the factor basis (p1, . . . , pk).
This reduction is also probabilistic.

Variants

The presented approach has several variants that result in different running
times. They vary in the choice of the factor basis—that might be adapted to
y and need not consist of the first primes without gap—and in the strategy
of choosing the exponents r and s.

The fastest known variant uses a number field sieve such as applied for
factoring large integers and has expenses of

≈ ec·
3
√

log p·(log log p)2 ,

the same order of magnitude as is needed for factoring an integer of the
same size. By the state of the art 1024-bit primes are insecure, and 2048-bit
primes secure only for short-term cryptographic applications.

As an oddity we mention that the “Secure NFS” protocol deployed by
SUN used a 192-bit prime (58 decimal places) even in the 1990s.

Special Primes

There are reasons to choose p as a special prime of the form p = 2p′+1 with
p′ prime:

1. Some algorithms are very fast if p − 1 has only small prime divisors.
This argument is no longer considered as solid since the advantage of
special algorithms over the current versions of the number field sieve
is only small. Moreover the probability of choosing such a “bad” prime
by accident is extremely small.

2. Finding a primitive element is easy, see Section A.9 in the appendix.

66



Chapter 5

Hard Number Theoretic
Problems

The following table gives an overview over cryptologically relevant num-
ber theoretic computational problems. “Efficient” means “computable with
polynomial cost”, “ERH” means “if the extended Riemann hypothesis
holds”, “prob.” means “by a probabilistic algorithm”.

Computational problem efficient? treated in

Primality test yes 3.1–3.8

For a prime number p

Finding a primitive element yes (ERH or prob.) A.2, A.9
Finding a quadratic nonresidue yes (ERH or prob.) A.8
Quadratic residuosity yes A.6
Taking a square root yes (ERH or prob.) follows in 5.3
Discrete logarithm ? (probably no) 4.1, 4.6

For a composite integer n

Factoring ? (probably no) 2.2, 2.4
RSA inversion (e-th root) ? (probably no) 2.2
Computation of Euler function ? (probably no) 2.2
Computation of Carmichael f. ? (probably no) 2.2
Finding a primitive element ? (probably no) A.4
Quadratic residuosity ? (probably no) A.11
Taking a square root ? (probably no) follows in 5.5
Discrete logarithm ? (probably no) follows in 5.1

Figure 5.1 shows the connection between computational problems for
a composite integer n. An arrow from A to B indicates that problem B
reduces to Problem A by an efficient (maybe probabilistic) algorithm. For an
unidirectional arrow the reverse direction is unknown. Reductions indicated
by red arrows will be proved in this chapter (sometimes only in the case

67



where n is a product of two primes). [The task denoted by “Pol. fact.” means
factoring polynomials in one variable over the residue class ring Z/nZ. We’ll
not treat it in these lecture notes.]

Pol. fact.

?

Discrete log.

?

Factoring

?

RSA inversion

-�Square root

?

Quadratic res.

�
�
�
�
���

�
�
�

�	

Carmichael f.

-� Euler f.

@
@
@
@
@R

Find a primit. el.

Figure 5.1: Connection between computational problems for a composite
module

68



5.1 Discrete Logarithm and Factorization

Let a ∈Mn, ord a = s, and consider the exponential function

expa : Z −→Mn

The problem of computing discrete logarithms mod n is to find an algorithm
that for each y ∈Mn

• outputs “no” if y 6∈ 〈a〉,

• else outputs an r ∈ Z with 0 ≤ r < s and y = ar mod n.

Proposition 15 (E. Bach) Let n = pq with different primes p, q ≥ 3.
Then factoring n admits a probabilistic efficient reduction to the computation
of discrete logarithms mod n.

Proof. We have ϕ(n) = (p−1)(q−1). For a randomly chosen x ∈Mn always
xϕ(n) ≡ 1 (mod n). Let y := xn mod n, thus

y ≡ xn ≡ xn−ϕ(n) = xpq−(p−1)(q−1) = xp+q−1 (mod n).

The discrete logarithm yields an r with 0 ≤ r < ordx ≤ λ(n) and
y = xr mod n. Hence

xr−(p+q−1) ≡ 1 (mod n), ordx | r − (p+ q − 1).

Since |r− (p+ q− 1)| < λ(n) the probability is high that r = p+ q− 1. This
happens for example if ordx = λ(n). Otherwise choose another x.

From the two equations

p+ q = r + 1

p · q = n

we easily compute the factors p and q. 3

69



5.2 Square Roots and Factorization

Proposition 16 (M. Rabin) Let n = pq with different primes p, q ≥ 3.
Then factoring n admits a probabilistic efficient reduction to taking square
roots mod n.

Proof. Z/nZ contains four different roots of unity, hence also four different
square roots of each square in Mn.

For a random choice of x ∈ Mn the square root algorithm provides a
root y ∈Mn of x2, thus

y2 ≡ x2 (mod n).

The probability that y 6≡ ±x (mod n) is 1
2 . Since

n | (x2 − y2) = (x+ y)(x− y), n 6 | (x± y),

gcd(n, x+ y) is a proper divisor of n. 3

Therefore an attacker who knows how to take square roots mod n also
can factorize n.

The reverse direction follows in Section 5.5.

70



5.3 Square Roots in Finite Prime Fields

In many cases taking square roots is a trivial task as the following simple
consideration shows:

Lemma 9 Let G be a finite group of odd order m. Then for each a ∈ G

there is exactly one x ∈ G with x2 = a, and it is given by x = a
m+1

2 .

Proof. Since am = 1 we have x2 = am+1 = a. We conclude that the squaring
map x 7→ x2 is surjective, hence a bijection G −→ G. 3

We search methods for taking square roots in a finite prime field Fp
as efficiently as possible. The case p ≡ 3 (mod 4) is extremely simple by
the foregoing consideration: If p = 4k + 3, then the group M2

p of quadratic

residues has odd order p−1
2 = 2k + 1. Hence for a quadratic residue z ∈ M2

p

the unique square root is x = zk+1 mod p [Lagrange 1769]. The cost of
taking this square root is at most 2 · log2(p) congruence multiplications.

Examples

1. For p = 7 = 4 ·1+3 we have k+1 = 2. By A.8 2 is a quadratic residue.
A square root is 22 = 4. Check: 42 = 16 ≡ 2.

2. For p = 23 = 4 · 5 + 3 we have k+ 1 = 6. By A.8 again 2 is a quadratic
residue. A square root is 26 = 64 ≡ 18. Check: 182 ≡ (−5)2 = 25 ≡ 2.

Unfortunately for p ≡ 1 (mod 4) we cannot hope for such a simple pro-
cedure. For example −1 is a quadratic residue, but no power of −1 can be
a square root of −1 since always [(−1)m]2 = (−1)2m = 1 6= −1.

Fortunately there are general procedures, for example one that is bap-
tized AMM after Adleman, Manders, and Miller, but was described al-
ready by Cipolla in 1903. It starts by decomposing p− 1 into p− 1 = 2e ·u
with odd u. Furthermore we choose (once and for all) an arbitrary quadratic
nonresidue b ∈ F×p −M2

p—this is the only nondeterministic step in the algo-
rithm, see Section A.8. (Assuming ERH the procedure is even deterministic,
as it is in the many cases where a quadratic nonresidue is known anyway.)

Now we consider a quadratic residue z ∈ M2
p and want to find a

square root of it. Since z ∈ M2
p, we have ord(z) | p−12 , hence the 2-order

r = ν2(ord(z)) of ord(z) is bounded by ≤ e − 1, and r is minimal with
zu2

r ≡ 1.
We recursively define a sequence z1, z2, . . . beginning with

z1 = z with r1 = ν2(ord(z1)).

71



If zi ∈ M2
p is chosen, and ri is the 2-order of ord(zi), then the sequence

terminates if ri = 0. Otherwise we set

zi+1 = zi · b2
e−ri .

Then zi+1 ∈M2
p. Furthermore

zu·2
ri−1

i+1 ≡ zu·2ri−1

i · bu·2e−1 ≡ 1,

since the first factor is ≡ −1 due to the minimality of ri, and the second
factor is ≡ ( bp) = −1, for u · 2e−1 = p−1

2 . Hence ri+1 < ri. The terminating
condition rn = 0 is reached after at most e steps with n ≤ e ≤ log2(p).

Then we compute reversely:

xn = z
u+1
2

n mod p

with x2n ≡ zu+1
n ≡ zn (since ord(zn) |u by its odd parity). Recursively

xi = xi+1/b
2e−ri−1

mod p

that by induction satisfies

x2i ≡ x2i+1/b
2e−ri ≡ zi+1/b

2e−ri ≡ zi.

Hence x = x1 is a square root of z.
In addition to the cost of finding b we count the following steps:

• Computing the powers b2, . . . , b2
e−1

, costing (e− 1) modular squares.

• Computing the powers bu, b2u, . . . , b2
e−1u, taking at most

2 · log2(u) + e− 1 congruence multiplications.

• Computing zu, taking at most 2 · log2(u) congruence multiplications.

• Furthermore we compute for each i = 1, . . . , n ≤ e:

– zi by one congruence multiplication,

– zui from zui−1 by one congruence multiplication,

– zu2
r

i from zu2
r

i−1 by one congruence multiplication,

– and then ri.

This makes a total of at most 3 · (e− 1) congruence multiplications.

• xn as a power by at most 2 · log2(u) congruence multiplications.

• xi from xi+1 each by one congruence division with cost O(log(p)2).

Summing up we get costs of size about O(log(p)3) with a rather small con-
stant coefficient.

72



Example Let p = 29 and z = 5. Then p− 1 = 4 · 7, hence e = 2 and u = 7.
By the remarks above b = 2 is a quadratic nonresidue. We compute
the powers

b2 = 4, bu ≡ 128 ≡ 12, b2u ≡ 144 ≡ −1,

z2 ≡ 25 ≡ −4, z4 ≡ 16, z6 ≡ −64 ≡ −6, z7 ≡ −30 ≡ −1.

Now
z1 = 5, zu1 ≡ −1, z2u1 ≡ 1, r1 = 1,

z2 ≡ z1b2 ≡ 5 · 4 = 20, zu2 ≡ zu1 b2u ≡ (−1)(−1) = 1, r2 = 0.

Now we go backwards:

x2 ≡ z
u+1
2

2 = z42 = (z22)2 ≡ 4002 ≡ (−6)2 = 36 ≡ 7,

x1 = x2/b mod p = 7/2 mod 29 = 18.

Hence x = 18 is the wanted root. Check: 182 = 324 ≡ 34 ≡ 5.

Exercises Find deterministic algorithms (= simple formulas) for taking
square roots in the fields

• Fp with p ≡ 5 (mod 8)

• F2m with m ≥ 2 [Hints: 1. Consider the order of the radicand in
the multiplicative group. 2. Invert the linear map x 7→ x2.]

• Fq for q = pm

Alternative algorithms: Almost all known efficient algorithms that com-
pletely cover the case p ≡ 1 (mod 4) are probabilistic and have
a deterministic variant whose cost is polynomial assuming ERH.
The book by Forster (Algorithmische Zahlentheorie) has a vari-
ant of the Cipolla/AMM algorithm that uses the quadratic exten-
sion Fp2 ⊇ Fp and is conceptionally quite simple. The Handbook of
Applied Cryptography (Menezes/van Oorschot/Vanstone) con-
tains an algorithm by Tonelli 1891 that admits a concise formu-
lation, but cost O(log(p)4). Another method is a special case of the
Cantor/Zassenhaus algorithm for factoring polynomials over finite
fields, see von zur Gathen/Gerhard: Modern Computer Algebra.
Yet another procedure by Lehmer uses the Lucas sequence (an) with
a1 = b, a2 = b2 − 2z, where b2 − 4z is a quadratic nonresidue. The
only known deterministic algorithm with proven polynomial cost was
given by Schoof. It uses elliptic curves, and costs O(log(p)9), so it is
of theoretical interest only.

For overviews see:

73



• E. Bach/ J. Shallit: Algorithmic Number Theory. MIT Press, Cam-
bridge Mass. 1996.

• D. J. Bernstein: Faster square roots in annoying finite fields.
Preprint (siehe die Homepage des Autors http://cr.yp.to/).

74

http://cr.yp.to/


5.4 Square Roots for Prime Power Modules

A simple procedure (implicitly using Hensel’s lifting) allows to extend the
square root algorithms from prime modules to prime powers. Let p be a
prime 6= 2, and let e ≥ 2. Let z be a quadratic residue mod pe. We want to
find a square root of z.

Of course z is also a quadratic residue modpe−1. Assume we already
have found a root for it, that is a y with y2 ≡ z (mod pe−1). Let

a = 1/(2y) mod p

and y2 − z = pe−1 · u. We set

x := y − a · (y2 − z) mod pe.

Then we have

x2 ≡ y2 − 2ay(y2 − z) + a2(y2 − z)2 ≡ y2 − 2aype−1u

≡ y2 − pe−1u = z (mod pe).

Hence x is a square root of z mod pe.
We wont explicit this algorithm but illustrate it with two examples:

Examples

1. n = 25, z = 19. We have p = 5, 19 mod 5 = 4. Hence we can take
y = 2 and a = 1/4 mod 5 = 4. Then y2 − z = −15 and

x = 2 + 15 · 4 mod 25 = 62 mod 25 = 12.

Check: 122 = 144 = 125 + 19.

2. n = 27, z = 19. We have p = 3, 19 mod 3 = 1. Hence in the first step
we can take y = 1 and a = 1/2 mod 3 = 2. Then y2 − z = −18 and

x = 1 + 2 · 18 mod 9 = 37 mod 9 = 1.

For the second step (from 9 to 27) again y = 1, y2 − z = −18, and

x = 37 mod 27 = 10.

Check: 102 = 100 = 81 + 19.

The costs consist of two contributions:

1. One square root mod p and one division. (The quotient a needs to be
computed only once since x ≡ y (mod p).)

75



2. Each time the exponent is incremented we execute two congruence
multiplications and two subtractions.

Hence the total cost is O(log(n)3) for the module n.
Finally we have to consider the case where n = 2e is a power of two.
For e ≤ 3 the only quadratic residue is 1, its square root is 1.
For larger exponents e we have again a recurrence to e − 1: Let z be

an odd integer (all invertible elements are odd). Assume we already found
a y with y2 ≡ z (mod 2e−1). Then y2 − z = 2e−1 · t. If t is even, then
y2 ≡ z (mod 2e). Otherwise we set x = y + 2e−2. Then

x2 ≡ y2 + 2e−1y + 22e−4 ≡ z + 2e−1 · (t+ y) ≡ z (mod 2e),

since t + y is even. Hence x = y or y + 2e−2 is a square root of z. Here the
cost is even smaller than O(log(n)3).

By the way we have shown that z is a quadratic residue mod 2e (for
e ≥ 3) if and only if z ≡ 1 (mod 8).

76



5.5 Square Roots for Composite Modules

If we know the prime decomposition of the module n, then we can efficiently
compute square roots in Mn. The two tasks “factoring” and “computing
square roots” are equivalent with respect to their complexity.

For an execution of the procedure we successively decompose n into
coprime factors (down to the prime powers).

So let n = rs with coprime factors r and s. First we compute coefficients
a and b such that ar + bs = 1 using the extended Euclidean algorithm.

We want to find a square root of z. Let u be a square root mod r and v be
a square root mod s. Then x := arv + bsu mod n satisfies the congruences:

x ≡ bsu ≡ u (mod r), x ≡ arv ≡ v (mod s),

x2 ≡ u2 ≡ z (mod r), x2 ≡ v2 ≡ z (mod s),

hence x2 ≡ z (mod n).
The cost for this procedure is two square roots modulo the factors, one

Euclidean algorithm, and four congruence multiplications (+ 1 congruence
addition). Hence it is O(log(n)3).

For Blum integers (see Appendix A.11) we even have a simpler algo-
rithm, namely an explicit formula:

Corollary 1 Let n = pq with primes p, q ≡ 3 (mod 4). Then

(i) d = (p−1)(q−1)+4
8 is an integer.

(ii) For each quadratic residue x ∈M2
n the power xd is the (unique) square

root of x in M2
n.

Proof. (i) If p = 4k+ 3, q = 4l+ 3, then (p− 1)(q− 1) = 16kl+ 8k+ 8l+ 4,
hence d = 2kl + k + l + 1.

(ii) The exponent of the multiplicative group Mn,

λ(n) = kgV(p− 1, q − 1) = 2 · kgV(2k + 1, 2l + 1)

is a divisor of 2 · (2k + 1) · (2l + 1), The exponent of the subgroup M2
n of

squares is λ(n)
2 , hence a divisor of (2k+1)·(2l+1) = 4kl+2k+2l+1 = 2d−1.

Thus x2d ≡ x (mod n) for all x ∈M2
n, thus the square of xd is x. 3

This simple formula has the effect that the Rabin cipher is especially
easy to handle for Blum integer modules.

77



Chapter 6

Equivalences of Basic
Cryptographic Functions

In real world applications the basic cryptographic functions

1. Symmetric ciphers:

(a) bitblock ciphers

(b) bitstream ciphers

2. Asymmetric ciphers

3. Keyless ciphers:

(a) one-way functions

(b) hash functions

4. Random generators:

(a) physical random generators

(b) (algorithmic) (pseudo-) random generators

5. Steganographic procedures

are used for the construction of cryptographic protocols. We’ll see that the
existence of most of them—1a, 1b, 3a, 3b, 4b in suitable variants—is equiv-

alent with the basic problem of theoretic computer science P
?
6= NP, and

thus lacks a proof.
Warning: Most parts of this section are mathematically inexact. State-

ments on complexity are formulated in the naive way and justified by heuris-
tic arguments. Then we sketch the approach to formalizing them by Turing
machines. However this model turns out as insufficient for cryptology. The
mathematically sound versions of complexity results for cryptologic proce-
dures are given in Appendix B.

78



6.1 One-Way Functions

We continue to use the informal definition from 4.1. An exact approach is
given in Appendix B.2.

Application A natural application of one-way functions is one-way encryp-
tion. This means:

• Everyone can encrypt.

• No one can decrypt.

What is it good for if no one can decrypt? There are several meaningful
applications for one-way functions, in particular for the special case of hash
functions, see 6.2:

• Password management, for instance in Unix or MS Windows. No one
must be able to read the password. But the operating system must be
able to compare an entered password with the one it has in its data
base in encrypted form. (“cryptographic matching”)

• A similar application is pseudonymization: Data of a person should
be combined with data from the same person stored elsewhere or at
other times without revealing the identity of this person.

• Another application is making digital signatures faster, see 6.2.

• The crucial property of asymmetric encryption is that nobody can
derive the private key from the public one. However the direct naive
application of one-way functions doesn’t work, as we saw already for
the ElGamal cipher in 4.5.

Examples of conjectured one-way functions:

1. The discrete exponential function, see 4.1.

2. Consider a bitblock cipher

F : M ×K −→ C

that resists an attack with known plaintext. A standard trick to
get a one-way function f : K −→ C from it works as follows:

f(x) := F (m0, x).

In words: We take a fixed plaintext m0—maybe the all-zero
block—and encrypt it with a key that is exactly the block x to be
one-way encrypted. Inverting this function amounts to an attack
with known plaintext m0 on the cipher F .

79



3. Let n ∈ N be a composite module. From 5.2 we know
that—at least in the case where n is the product of two
large prime numbers—computing square roots modn is proba-
bly hard. Hence the squaring map x 7→ x2 mod n is a probable
one-way function of the residue class ring Z/nZ. Note that calcu-
lating the inverse map is possible with additional information in
form of the prime factors of n. Such an additional information is
called a “trapdoor”. The function is then called a “trapdoor one-
way function”. This is the crucial security feature of the Rabin
cipher.

4. The same conclusion holds for the RSA function x 7→ xe mod n
with an exponent e that is coprime with λ(n) (oder ϕ(n)).

80



6.2 Hash Functions

Hash functions are the most important special cases of one-way functions.
They are also known as “message digests” or “cryptographic check sums”.

Definition 1 Let Σ be an alphabet and n ∈ N be a fixed integer ≥ 1. A
one-way function

h : Σ∗ −→ Σn

is called weak hash function over Σ.

It maps character strings of arbitrary lengths to character strings of a given
fixed length. (Since Σ∗ is infinite we interpret the one-way property as: the
restriction of h to Σr is one-way for all sufficiently large r.

Definition 2 A one-way function f : M −→ N is called collision free
if there is no efficient way to find x1, x2 ∈ M with x1 6= x2, but
f(x1) = f(x2).

This is a kind of “virtual injectivity”. Needless to say that true injective one-
way functions are collision free. If #M > #N , then f cannot be injective,
but nevertheless could be collision free.

Definition 3 A (strong) hash function is a collision free weak hash func-
tion.

For practical applications (mostly with Σ = F2) the length n of the
hash values should be as small as possible. On the other hand to exclude
efficient invertibility, and thus to get cryptographic security, n must be suffi-
ciently large. We want a weak hash function to deliver uniformly distributed
values that look statistically random, and to be safe from an exhaustion at-
tack as illustrated in Figure 6.1. Inserting m blanks at will we generate 2m

different—but optically indistinguishable—versions of a text document. If
m is large enough, with high probability one of these versions will have the
given hash value.

row 1 (add blank) → 2 different versions
...

...
row i (add blank) → 2 different versions

...
...

row m (add blank) → 2 different versions

Figure 6.1: An exhaustion attack: How to fake a document to have a given
hash value by generating 2m different versions

81



As a consequence n = 80 is just too weak as a lower bound, we’d better
use 128-bit hashes. This is the hash length of the well-known but outdated
functions MD2, MD4, MD5.

But virtually all applications even need collision free hashes. Remember
the birthday paradox, see I.2.6: To exclude collisions with sufficient certainty
we need about twice the bitlength than for the one-way property. So hash
values of 160 bits are just below the limit. The former standard hash func-
tions SHA-1 and RIPEMD use exactly this length. Their use is strongly
discouraged. In the context of AES the hash function SHA-2 with at least
256-bit values was specified, conveniently also denoted as SHA-256 etc. [see
http://csrc.nist.gov/publications/]. The new standard SHA-3 is valid
since 2015.

In fact for the MDx functions there is a systematic way to find collisions
[Dobbertin 1996ff.], also SHA-1 collisions are known (2005).

document a document b

row 1 (add blank) row 1 (add blank)
...

...
...

...
row m (add blank) row m (add blank)

Figure 6.2: A collision attack: How to fake a document to have the same
hash value as another document

Applications

(Strong) hash functions are in use for

• digital signatures: To sign a long message with the private key would
take much time due to the slowness of asymmetric ciphers. The stan-
dard procedure is to sign a hash of the message.

For security we need a collision free hash function. Otherwise the at-
tacker could get a valid signature for an arbitrary document a without
stealing Alice’s private key: He produces an innocently looking docu-
ment b that Alice is glad to sign. Then he fabricates q = 2m variants
a1, . . . , aq and b1, . . . , bq of both documents, for example by inserting
spaces at m different positions. If he finds a collision h(ai) = h(bj), he
lets Alice sign bj , getting a valid signature for ai too.

• transforming a long, but memorizable passphrase (“Never change a
working % password 24 because you’ll ? forget the nEW one+”) into
an n-bit key (BA8C0C8C1C65364F in hexadecimal notation) for a sym-
metric cipher.

82



6.3 Conversion Tricks

We give heuristic reasons that the following statements (A) to (D) are equiv-
alent, and that each of them implies (E)—for a formal mathematical proof
we don’t have yet the exact definitions.

These implications also have practical relevance for constructing a ba-
sic function given another one. A coarse summary—for the discussion on
regulations of cryptography that pop up from time to time—consists of the
statements

• Who wants to prohibit encryption also must prohibit hash functions
and pseudorandom generators.

• Who wants to make cryptography impossible must prove that
P = NP.

(A) There is a one-way function f : Fn2 −→ Fn2 .

(Ã) There is a one-way function f̃ : F2n
2 −→ Fn2 .

(B) There is a weak hash function h : F∗2 −→ Fn2 .

(C) There is a strong symmetric cipher F : Fn2 ×Fn2 −→ Fn2 (where “strong”
means secure under a known-plaintext attack).

(D) There is a perfect pseudorandom generator σ : Fn2 −→ Fp(n)2 .

(E) P 6= NP.

Remark 1 Making the statements precise in terms of complexity theory we
have to state (A) – (D) for families of functions that are parametrized
by n.

Remark 2 A pseudorandom generator is perfect if for unknown x ∈ Fn2 ,
given some bits of the output σ(x), there is no efficient way to predict
some more bits of the output, or to compute x. In the specification
p is a polynomial with integer coefficients—from a “seed” of length n
the generator produces p(n) bits.

We omit reasoning about the implication “(D) =⇒ (E)”.
“(C) =⇒ (D)”: Set σ(x) = (s1, . . . , sp(n)/n) with s0 := x and si :=

F (si−1, z) for i ≥ 1, where the key z is a secret constant parameter. Note
the similarity with the OFB mode for bitblock ciphers. For no block si of
the sequence the attacker is able to determine the previous block si−1—
otherwise the cipher wouldn’t be secure. It is not obvious that this property
suffices to show perfectness, we’ll show this in Chapter IV.

“(D) =⇒ (C)”: Consider the bitstream cipher that uses σ(x) as bitstream
and x as key.

83



“(A) =⇒ (C)”: There is a simple approach by E. Backus: Set
F (a, k) = a+ f(k). Under a known-plaintext attack a and c = F (a, k) are
known. Hence also f(k) = c−a is known. So the attack reduces to inverting
f .

[Other approaches: MDC (= Message Digest Cryptography) by P. Gut-
mann, or the Feistel scheme.]

“(C) =⇒ (A)”: See the example in Section 6.1.
“(A) =⇒ (Ã)”: Define f̃ by f̃(x, y) := f(x+y). Assume we can compute

a pre-image (x, y) of c for f̃ . Then this gives also the pre-image x + y of c
for f .

“(Ã) =⇒ (B)”: Pad x ∈ F∗2 with (at most n − 1) zeroes, giving
(x1, . . . , xr) ∈ (Fn2 )r. Then set

c0 := 0,

ci := f̃(ci−1, xi) for 1 ≤ i ≤ r,
h(x) := cr.

This defines h : F∗2 −→ Fn2 .
Let y ∈ Fn2 be given. Assume the attacker finds a pre-image x ∈ (Fn2 )r

with h(x) = y. Then she also finds a z ∈ (Fn2 )2 with f̃(z) = y, namely
z = (cr−1, xr) (where y = cr in the construction of h).

“(B) =⇒ (A)”: Restricting h to Fn2 also gives a one-way function.

84



6.4 Physical Complexity

The obvious approach to assessing the complexity of an algorithm is count-
ing the primitive operations that a customary processor executes, or, more
exactly, counting the clock cycles. This would lead to concrete results like:
“Computing . . . costs at least (say) 1080 of the following steps: . . . ”. For
example we could count elementary arithmetical operations (additions, mul-
tiplications, . . . ), taking into account the word size of the processor (e. g.
32 bits) and the number of clock cycles for the considered operations. [Note
that this number might not be uniquely defined on a modern CPU with
pipeline architecture.]

For many concrete algorithms statements of this kind are possible, and
often lead to interesting mathematical problems as abundantly demon-
strated by D. Knuth in his books.

Unfortunately no flavour of complexity theory yields results on the mini-
mum number of steps that each algorithm for solving a certain problem must
execute, except for extremely simple problems like evaluating a polynomial
for a certain argument. If we knew results of this kind, we could mathemat-
ically prove the security of cryptographic procedures without recurring to
unproven conjectures or heuristic arguments.

This kind of reasoning could take into account physical bounds that limit
the resources computers in this universe can dispose of. A known estimate
of this kind was proposed by Louis K. Scheffer in sci.crypt:

• Our universe contains at most 1090 elementary particles. This is cer-
tainly an upper bound for the number of available CPUs.

• Passing an elementary particle with the speed of light takes at least
10−35 seconds. This is certainly a lower bound for the time required
by a single operation.

• Our universe has a life span of at most 1018 seconds (≈ 30×109 years).
This is certainly an upper bound for the available time.

Multiplying these bounds together we conclude that at most 10143 ≈ 2475

operations can be executed in our universe. In particular 500-bit keys are
secure from exhaustion . . .

. . . until such time as computers are built from something other
than matter, and occupy something other than space. (Paul
Ciszek)

Note that this security bound holds for the one algorithm “exhaustion”. It
has no relevance for the security of even a single cryptographic procedure!
(As long as there is no proof that no attack is faster than exhaustion.)

Needless to say that a realistic upper bound is smaller by several orders
of magnitude.

85



For comparision we list some cryptologically relevant quantities:

seconds/year 3× 107

CPU cycles/year (1 GHz CPU) 3.2× 1016

age of our universe (years) 1010

CPU cycles since then (1 GHz) 3.2× 1026

atoms of the earth 1051

electrons in our universe 8.37× 1077

ASCII strings of length 8 (958) 6.6× 1015

binary strings of length 56 (256) 7.2× 1016

binary strings of length 80 1.2× 1024

binary strings of length 128 3.4× 1038

binary strings of length 256 1.2× 1077

primes with 75 decimal places (about 250 bits) 5.2× 1072

86



6.5 Turing Machines

The mathematical results of complexity theory consist almost exclusively of
asymptotic cost estimates, and in almost all cases these estimates are upper
bounds. Complexity theory in its various flavours relies on diverse models
of computation. In this section we shortly sketch the common formalism by
Turing machines.

-input

∈ Σ∗
M -output

∈ Σ∗

Here Σ (as usual) denotes a finite alphabet. The input is a finite string
on a tape that is infinite in both directions. The Turing machine M can
assume states from a finite set that also contains a state “halt”. Depending
on the state the machine executes certain operations, for instance reads one
character from the tape, changes its state, writes one character to the tape,
moves the reading head by one position to the left or to the right. If M
reaches the state “halt”, then the current string on the tape is the output.

Let L ⊆ Σ∗ be a language. If M reaches the “halt” state after a finite
number of steps for all inputs x ∈ L, then we say that M accepts the
language L. If f : L −→ Σ∗ is a function, and M reaches “halt” after
finitely many steps for each x ∈ L with output f(x), then we say that M
computes f .

With some effort, and not too overwhelming elegance, we can describe
all algorithms by Turing machines. Then by counting the steps we may
express their complexities in the form: for input x the machine M takes τx
steps until reaching “halt”.

Usually we consider “worst case” complexity. Let Ln := L ∩ Σn. Then
the function

tM : N −→ N, tM (n) := max{τx | x ∈ Ln},

is called (time) complexity of the Turing machine M (for L).
The subset P (“polynomial time”) of the set of all functions from L to

Σ∗ consists of the functions f : L −→ Σ∗ for which there exists a Turing
machine M and an integer k ∈ N such that

(i) M computes f ,

(ii) tM (n) ≤ nk for almost all n ∈ N.

Remark Equivalent with (ii) is the statemant: There is a polynomial
p ∈ N[X] with tM (n) ≤ p(n) for all n ∈ N.

87



For if there is such a polynomial p = arX
r + · · ·+ a0 (with ar 6= 0), then

arn
r ≥ ar−1n

r−1 + · · ·+ a0 for n ≥ n0,
p(n) ≤ 2arn

r for n ≥ n0,
p(n) ≤ nr+1 for n ≥ n1 = max{2ar, n0}.

Conversely if tM (n) ≤ nk for n ≥ n0, then we choose c ∈ N with tM (n) ≤ c
for the finitely many n = 0, . . . , n0 − 1. Then tM (n) ≤ p(n) for all n ∈ N
with p = Xk + c.

Analogously we define the set EXPTIME (“exponential time”): f is in
EXPTIME if there exist a Turing machine M , an integer k ∈ N, and real
numbers a, b ∈ R with

(i) M computes f ,

(ii) tM (n) ≤ a · 2bnk for almost all n ∈ N.

Obviously P ⊆ EXPTIME.

Examples with Σ = F2.

1. Assume

L := {(p, z) ∈ N2 | p prime ≡ 3 (mod 4), z ∈M2
p}

is coded as a subset of Σ∗ by a suitable binary representation. Let
f(p, z) = the square root of z mod p, likewise coded as an element of
Σ∗. Then f ∈ P by 5.3.

2. Let L = N2 be the set of integers ≥ 2 (binary coded). Let f(x) = be
the smallest prime factor of x. Then f ∈ EXPTIME since we can try
all the integers ≤

√
x ≤ 2n/2.

Presumably f 6∈ P.

3. The knapsack problem. Here

L = {(m, a1, . . . , am, N) |m, a1, . . . , am, N ∈ N}

with suitable binary encoding,

f(m, a1, . . . , am, N) =


1, if there is S ⊆ {1, . . . ,m}

with
∑

i∈S ai = N,

0 otherwise.

Then f ∈ EXPTIME since we can try all of the 2m subsets
S ⊆ {1, . . . ,m}.
Presumably f 6∈ P.

88



6.6 The Class NP

We say that the Turing machine M computes f : L −→ Σ∗ nondeter-
ministically if for each x ∈ L there is a y ∈ Σ∗ such that M , given the
concatenation xy of x and y as input, reaches “halt” after finitely many
steps with output f(x).

Example Let Σ = F2 and L = {(n, a, x) ∈ N3 | n ≥ 2, a, x ∈ Mn}. Let
f = loga mod n be the discrete logarithm.

For a given x let y be the logarithm of x—it doesn’t matter in the
definition from where we get the logarithm, in any case it exists. All
the Turing machine M has to do is to check whether ay = x. Then
it writes y to the tape and halts.

General idea A candidate y for the solution is provided, M only does a
check.

Alternative idea An unbounded number of parallel Turing machines
each checks a different y ∈ Σ∗.

The set NP (“nondeteministic polynomial time”) is defined as the set
of all functions for which there exists a Turing machine M and an integer
k ∈ N with:

(i) M computes f nondeterministically,

(ii) tM (n) ≤ nk for almost all n ∈ N.

We have the inclusions

P ⊆ NP ⊆ EXPTIME.

The first of these is trivial, the second is a theorem that we don’t prove here.
The most important unsolved problem of theoretical computer science

is the conjecture

P
?
6= NP.

Likewise unproven is the conjecture

NP
?
6= EXPTIME.

On the other hand the statement

P 6= EXPTIME,

is proven, if only by constructing “artificial” problems. There is no known
“natural” problem proven to be in the difference set.

By the way we cannot make cryptanalysis of a cipher more difficult than
NP: Exhaustion—that is trying all keys with a known plaintext—is always
possible, and the encryption function must be efficient, hence in P.

89



Examples

1. If f is the discrete logarithm as above, then f ∈ NP.

2. Likewise factoring integers is in NP.

3. Also the knapsack problem is in NP.

We call the function f NP-complete if for each Turing machine M
that computes f (deterministically!) and each function g ∈ NP there exists
a Turing machine N that computes g and an integer k ∈ N such that

tN (n) ≤ tM (n)k for almost all n ∈ N.

In other words the complexity of N is at most polynomial in the complexity
of M .

Interpretation NP-complete problems are the maximally complex ones
among those in NP.

It is known that NP-complete problems exist. We refrain from proving this
theorem here.

For instance the knapsack problem is NP-complete, as is the determi-
nation of roots of (polynomial) functions p : Fn2 −→ F2. Factoring integers is
presumably not NP-complete.

Should P = NP hold—nobody believes it—, then all functions in NP
would be NP-complete. If not, the following drawing illustrates the relative
situation of the complexity classes:'

&

$

%

EXPTIME'

&

$

%
NP

' $
NP-complete

& %P

90



Appendix A

Primitive Elements and
Quadratic Residues

This mathematical appendix treats in a closed form some number theoretic
subjects that play a major role for cryptology. They relate to the multiplica-
tive group of a residue class ring.

As we saw in the main text several results on the security of crypto-
graphic procedures depend on the non-existence of efficient algorithms for
some tasks.

Relevant problems and their (incomplete) solutions are:

1. Find a primitive element.

• The complexity of the general case is unknown.

• Exhaustion is efficient if ERH holds.

• There is a much more efficient probabilistic algorithm, that how-
ever doesn’t even terminate in the worst case.

• For many prime modules the solution is trivial.

• Proving primitivity is efficient if the prime factors of the order of
the multiplicative group are known. Otherwise the complexity is
unknown.

• For a composite module the problem reduces to its prime
factors—if these are known.

2. Decide on quadratic residuosity.

• For prime modules there is an efficient algorithm.

• For a composite module the problem reduces to its prime
factors—if these are known.

• For composite modules with unknown prime factors the complex-
ity is unknown. Presumably the problem is hard (as hard as prime
decomposition).

91



3. Find a quadratic non-residue.

• The complexity of the general case is unknown.

• Exhaustion is efficient if ERH holds.

• There is an efficient probabilistic algorithm, that however doesn’t
even terminate in the worst case.

• For most primes the solution is trivial.

• For a composite module the problem reduces to its prime
factors—if these are known.

A related problem, finding square roots in residue class rings, is treated in
Chapter 5.

92



A.1 Primitive Elements for Powers of 2

The cases n = 2 or 4 are trivial: M2 is the one-element group. M4 is cyclic
of order 2, thus 3 ≡ −1 (mod 4) is primitive.

From now on we assume n = 2e with e ≥ 3. Note that Mn consists of
the residue classes of the odd integers, hence ϕ(n) = 2e−1.

Lemma 10 Let n = 2e with e ≥ 2.

(i) If a is odd, then

a2
s ≡ 1 (mod 2s+2) for all s ≥ 1.

(ii) If a ≡ 3 (mod 4), then n | 1 + a+ · · ·+ an/2−1.

Proof. (i) First we prove the statement for s = 1. In the case a = 4q + 1 we
have a2 = 16q2 + 8q+ 1. In the case a = 4q+ 3 we have a2 = 16q2 + 24q+ 9,
hence a2 ≡ 1 (mod 8).

The assertion for general s follows by induction:

a2
s−1

= 1 + t2s+1 =⇒ a2
s

= (a2
s−1

)2 = 1 + 2t2s+1 + t222s+2.

(ii) By (i) we have 2n = 2e+1 | an/2 − 1. Since only the first power of 2
divides a− 1 we conclude

n = 2e | a
n/2 − 1

a− 1

as claimed. 3

Lemma 11 Let p a prime and e an integer with pe ≥ 3. Let pe be the largest
power of p that divides x−1. Then pe+1 is the largest power of p that divides
xp − 1.

Proof. We have x = 1 + tpe with an integer t that is not a multiple of p. The
binomial theorem yields

xp = 1 +

p∑
k=1

(
p

k

)
tkpke.

Since p divides all binomial coefficients
(
p
k

)
= p!

k!(p−k)! for k = 1, . . . , p− 1 we

can factor out pe+1 from the sum:

xp = 1 + tpe+1s

93



with some integer s. Hence pe+1 divides xp− 1. It remains to show that s is
not a multiple of p. We take a closer look at s:

s =

p∑
k=1

1

p

(
p

k

)
· tk−1pe(k−1)

= 1 +
1

p

(
p

2

)
· tpe + · · ·+ 1

p
· tp−1pe(p−1).

Since pe ≥ 3 we have e(p− 1) ≥ 2, hence s ≡ 1 (mod p). 3

Lemma 10 implies

a2
e−2 ≡ 1 (mod n) for all odd a.

Hence the exponent λ(n) ≤ 2e−2, and Mn is not cyclic. More exactly:

Proposition 17 Let n = 2e with e ≥ 3. Then:

(i) The order of −1 in G = Mn is 2, the order of 5 is 2e−2, and G is the
direct product of the cyclic groups generated by −1 and 5.

(ii) If e ≥ 4, then the primitive elements mod n are the integers
a ≡ 3, 5 (mod 8). Their number is n/4.

Proof. (i) Since ord 5 | 2e and ord 5 ≤ 2e−2, we conclude that ord 5 is a power
of 2 and ≤ 2e−2.

Now 22 is the largest power of 2 in 5− 1, thus 23 is the largest power of
2 in 52−1 (by Lemma 11). Successively we conclude that 2e−1 is the largest
power of 2 in 52

e−3−1. Hence the 2e−2-th power of 5 is the smallest one ≡ 1
(mod 2e).

The product of the two subgroups is direct since −1 is not a power of 5—
otherwise 5k ≡ −1 (mod n), and, because of e ≥ 2, also 5k ≡ −1 (mod 4),
contradicting 5 ≡ 1 (mod 4).

The direct product is all of G since its order is 2 · 2e−2.
(ii) By (i) each element a ∈ G has a unique expression of the form

a = (−1)r5s with r = 0 or 1, and 0 ≤ s < 2e−2. Hence ak equals 1 in Z/nZ
if and only if kr is even and ks is a multiple of 2e−2. In particular then k is
even. If s is even, then the condition is satisfied for some k < 2e−2. Thus a
is primitive if and only if s is odd, or equivalently a ≡ ±5 (mod 8). 3

As a corollary we have λ(2e) = 2e−2 for e ≥ 4, and λ(8) = 2.

94



A.2 Primitive Elements for Prime Modules

More difficult (and mathematically more interesting) is the search for prim-
itive elements for a prime module. Since the multiplicative group is cyclic
it suffices to find one primitive element—all the other ones are powers of it
with exponents coprime with p− 1. In particular there are exactly ϕ(p− 1)
primitive elements mod p. Usually the primitive elements for any module n
where Mn is cyclic are also called primitive roots mod n.

The simplest, but not best, method is trying x = 2, 3, 4, . . ., and testing
if xd 6= 1 for each proper divisor d of p− 1. We need not to test all divisors:

Lemma 12 Let p be a prime ≥ 5. An integer x is primitive mod p, if and
only if x(p−1)/q 6= 1 in Fp for each prime factor q of p− 1.

Proof. The order of x divides p− 1, and each proper divisor of p− 1 divides
at least one of the quotients p−1

q . 3

To apply this criterion we need the prime decomposition of p− 1. Then
the test is efficient: The number of prime factors is ≤ log2(p − 1), and for
each of them we apply the binary power algorithm.

Example For p = 41 we have p − 1 = 40 = 23 · 5. Hence x is primitive if
and only if x20 6= 1 and x8 6= 1. The test runs through the following
steps in F41:

x = 2 : x2 = 4, x4 = 16,

{
x8 = 10,
x20 = x8x8x4 = 1.

x = 3 : x2 = 9, x4 = 81, x4 = −1, x8 = 1.
x = 4 : x = 22, hence x20 = 1.

x = 5 : x2 = 25, x4 = 10

{
x8 = 18,
x20 = x8x8x4 = 1.

x = 6 : x2 = 36, x4 = 25

{
x8 = 10,
x20 = x8x8x4 = −1.

Hence 6 is a primitive root for p = 41.

The obvious question is how many integers must we try to find a primitive
root? The quantity

α(p) := min{x ∈ N | x is primitive for p}

measures the complexity of complete search (but neglects the complexity of
the proof of primitivity). It is known that the the function α is not bounded.
In 1962 Burgess proved

α(p) = O( 6
√
p).

95



Assuming ERH this exponential bound may be lessened to a polynomial
one. The best known result is by Shoup 1990:

α(p) = O(log(p)6(1 + log log(p))4).

Even completely simple questions are yet unanswered:

• Is 2 primitive for infinitely many primes?

• Is 10 primitive for infinitely many primes? (Gauss’ conjecture)

Artin more generally conjectured: If a ∈ N, and a is not an integer square
(i. e. a 6= 0, 1, 4, 9, . . .), then a is primitive for infinitely many primes.

Some relevant references:

• D. R. Heath-Brown: Artin’s conjecture for primitive roots. Quart.
J. Math. Oxford 37 (1986), 27–38.

• M. Ram Murty: Artin’s conjecture for primitive roots. Math. Intel-
ligencer 10 (1988), 59–67.

• V. Shoup: Searching for primitive roots in finite fields. Proc. 22nd
STOC 1990, 546–554.

• Murata: On the magnitude of the least prime primitive root. J. Num-
ber Theory 37 (1991), 47–66.

96



A.3 Primitive Elements for Prime Powers

For prime powers we need one more lemma.

Lemma 13 Let p be prime ≥ 3, k, an integer, and d ≥ 0. Then

(1 + kp)p
d ≡ 1 + kpd+1 (mod pd+2).

Proof. For d = 0 the statement is trivial. For d ≥ 1 we reason by induction:
Assume

(1 + kp)p
d−1

= 1 + kpd + rpd+1 = 1 + (k + rp)pd.

Then

(1+kp)p
d

= (1+(k+rp)pd)p ≡ 1+p · (k+rp) ·pd ≡ 1+kpd+1 (mod pd+2),

since d+ 2 ≤ 2d+ 1 and p ≥ 3. 3

Proposition 18 Let p be prime ≥ 3, e, an exponent ≥ 2, and a be primitive
mod p. Then:

(i) a generates the group Mpe if and only if ap−1 mod p2 6= 1.

(ii) a or a+ p generates Mpe.

(iii) Mpe is cyclic, and λ(pe) = ϕ(pe) = pe−1(p− 1).

Proof. (i) Let t be the multiplicative order of a mod pe, necessarily a mul-
tiple of the order of a mod p, hence of p − 1. On the other hand t divides
ϕ(pe) = pe−1(p− 1). Hence t = pd(p− 1) with 0 ≤ d ≤ e− 1.

Choose k such that ap−1 = 1 + kp. Then by Lemma 13

(ap−1)p
e−2 ≡ 1 + kpe−1 ≡ 1 (mod pe)⇐⇒ p|k ⇐⇒ ap−1 ≡ 1 (mod p2).

This is not the case if and only if d = e− 1.
(ii) Assume a doesn’t generate Mpe . Then ap−1 ≡ 1 (mod p2), hence

(a+ p)p−1 ≡ ap−1 + (p− 1)ap−2p ≡ 1− ap−2 (mod p2),

and this is not ≡ 1 (mod p2).
(iii) follows immediately from (ii). 3

We immediately get an analogous result for modules that are twice a
prime power:

Corollary 1 Let q = pe be a power of a prime p ≥ 3. Then:

97



(i) The multiplicative group M2q is canonically isomorphic with Mq, hence
cyclic.

(ii) If a is a primitive element mod q, then a is primitive mod 2q for odd
a, and a+ q is primitive mod 2q for even a.

(iii) λ(2pe) = pe−1(p− 1).

Proof. (i) Since q and 2 are coprime, and M2 is the trivial group, by the
chinese remainder theorem M2q

∼= M2 ×Mq
∼= Mq. This map is explicitely

given by a mod 2q 7→ a mod q.
(ii) Exactly one of a and a+ q is odd, hence coprime with 2q. Thus the

inverse isomorphism is

a 7→

{
a, if a is odd,

a+ q, if a is even.

(iii) obvious. 3

98



A.4 The Structure of the Multiplicative Group

The previous results allow a complete characterization of the modules n for
which the multiplicative group Mn is cyclic:

Corollary 2 (Gauss 1799) For n ≥ 2 the multiplicative group Mn is
cyclic if and only if n is one of the integers 2, 4, pe, or 2pe with an odd
prime p.

Proof. This follows from Proposition 18, Corollary 1, and the following
Lemma 14. 3

Lemma 14 If m,n ≥ 3 are coprime, then Mmn is not cyclic, and
λ(mn) < ϕ(mn).

Proof. If n ≥ 3, then ϕ(n) is even. For a prime power this follows from the
explicit formula. In the general case we reason by the multiplicativity of the
ϕ-function. We conclude

kgV(ϕ(m), ϕ(n)) < ϕ(m)ϕ(n) = ϕ(mn),

λ(mn) = kgV(λ(m), λ(n)) ≤ kgV(ϕ(m), ϕ(n)) < ϕ(mn).

Hence Mmn is not cyclic. 3

Now the structure of the multiplicative group is completely known also
for a general module. Let us denote the cyclic group of order d by Zd.

Theorem 2 Let n = 2epe11 · · · perr be the prime decomposition of the integer
n ≥ 2 with different odd primes p1, . . . , pr, and e ≥ 0, r ≥ 0, e1, . . . , er ≥ 1.
Let qi = peii and q′i = pei−1i (pi − 1) for i = 1, . . . , r. Then

Mn
∼=

{
Zq′1 × · · · × Zq′r , if e = 0 or 1,

Z2 ×Z2e−2 ×Zq′1 × · · · × Zq′r , if e ≥ 2.

We find a primitive element a mod n by choosing primitive elements
a0 mod 2e (if e ≥ 2) and ai mod qi and solving the simultaneous congru-
ences a ≡ ai (mod qi), and if applicable a ≡ a0 (mod 2e).

Proof. All this follows from the chinese remainder theorem. 3

Exercise Derive a general formula for λ(n).

99



A.5 The Jacobi Symbol

Consider the multiplicative group Mn = (Z/nZ)× for a module n ≥ 2, and
its squaring map

q : Mn −→Mn, x 7→ x2 mod n .

q is a group homomorphism. The elements in the image of q are the
quadratic residues mod n. An integer x is a quadratic residue mod n if
x mod n is invertible, and there exists an integer u with u2 ≡ x (mod n).
Thus the set of quadratic residues is the subset M2

n of the residue class ring
Z/nZ. (This notation is not standard just as little as Mn. But it spares
writing ((Z/nZ)×)2 over and over again.)

Remarks and Examples

1. For n = 2 we have M2
n = Mn = {1}.

2. For n ≥ 3 we have −1 6= 1 and (−1)2 = 1. Hence q is not injective
and thus also not surjective. Therefore quadratic non-residues exist.

3. Let n = p ≥ 3 be prime. Then the kernel of q exactly consists of the
roots of the polynomial X2 − 1 in the field Fp, hence of {±1}. We
conclude that the number of quadratic residues is p−1

2 .

4. More generally let n = q = pe be a power of an odd prime p. Then
Mn is cyclic of order ϕ(q) = q · (1 − 1

p) by Proposition 18. Thus 1
has exactly the square roots ±1 in Mq, and the number of quadratic
residues is ϕ(q)/2.

5. Let n be a product of two different odd primes p and q. By the chinese
remainder theorem the natural map Mn −→ Mp ×Mq is an isomor-
phism. Hence Mn contains exactly four square roots of 1, and M2

n ≤Mn

is a subgroup of index 4.

6. In the general case let n = 2epe11 · · · perr be the prime decomposition
with different odd primes p1, . . . , pr, and r ≥ 0, e ≥ 0, e1, . . . , er ≥ 1.
Proposition 2 tells us the number of square roots of 1 in Mn:

2r, if e = 0 or 1,
2r+1, if e = 2,
2r+2, if e ≥ 3.

This number is also the order of the kernel of q, hence the index of
M2
n in Mn.

100



The naive algorithm, exhaustion, for determing the quadratic residuosity
of a mod n tries 12, 22, 32, . . . until it hits a. A quadratic non-residue always
takes bn2 c steps, a quadratic residue n/4 steps in the average. Thus the costs
grow exponentially with the number log n of places.

For the case where n is prime we’ll see better algorithms.
The phenomen that there is no efficient algorithm for composite integers

n is the basis of many cryptographic constructions, for instance the simplest
perfect random generator (BBS, see Part IV).

For a prime module p the Legendre symbol indicates quadratic resid-
uosity:

(
x

p
) =


1 if x is a quadratic residue,

0 if p|x,

−1 otherwise.

The Legendre symbol defines a homomorphism

(
•
p

) : Mp −→Mp/M2
p
∼= {±1}.

In the special case p = 2

(
x

2
) =

{
1 if x is odd,

0 if x is even.

Proposition 19 (Euler’s criterion) Let p be an odd prime. then

x
p−1
2 ≡ (

x

p
) (mod p) for all x.

Proof. If p|x both sides equal 0. Otherwise (x
p−1
2 )2 = xp−1 ≡ 1, hence

x
p−1
2 ≡ ±1. Let a be primitive modp. Then both sides equal −1, hence

the assertion holds for x = a. Since both sides represent homomorphisms
F×p −→ {±1} the assertion is true for all powers of a, hence for all x that
are no multiples of p. 3

Euler’s criterion yields an efficient algorithm for deciding quadratic
residuosity: We have to take p−1

2 -th powers in F×p , and this costs at most

2blog2(
p−1
2 )c multiplications mod p. Taking the cost of modular multiplica-

tion into account we get an order of magnitude of log2(p)
3.

By Euler’s criterion −1 is a quadratic residue if and only if p−12 is even,
hence p ≡ 1 (mod 4). The decision on 2 or 3 is significantly more difficult.
However there is an even faster algorithm. It is the subject of the following
Section A.6.

The Legendre symbol has a natural generalization by the Jacobi sym-
bol (that uses the same notation): For n > 0 with prime decomposition

101



n = p1 · · · pr (the pi not necessarily distinct)

(
x

n
) := (

x

p1
) · · · ( x

pr
) for x ∈Mn.

In particular (xn) = 0 if x and n are not coprime. The supplementing defini-
tions (x1 ) = 1, (xn) = ( x

−n) for n < 0, and (x0 ) = 0, make the Jacobi symbol
a function

(
•
•

) : Z× Z −→ Z

with values in {0,±1}, and multiplicative in numerator and denomina-
tor. In particular the Jacobi symbol defines a homomorphism ( •n) from
Mn to {±1}. But it is not an indicator of quadratic residuosity. Denoting
M+
n = ker( •n) and M−n = Mn −M+

n , in general M2
n is a proper subgroup of

M+
n . Its index is given by example 6 above: If the number of square roots of

1 is 2k with k ≥ 1, then M2
n has index 2k−1 in M+

n .
In any case (xn) depends on the residue class x mod n only. Obviously

(
x

2k
) =

{
1, if x is odd,

0, if x is even.

102



A.6 Quadratic Reciprocity

Quadratic reciprocity provides a very convenient method of computing the
Jacobi (or Legendre) symbol and thereby deciding quadratic residuosity.
It relies on the following two propositions and a lemma that helps to reduce
composite modules to prime modules.

Lemma 15 Let s, t ∈ Z be odd. Then

(i) s−1
2 + t−1

2 ≡
st−1
2 (mod 2),

(ii) s2−1
8 + t2−1

8 ≡ s2t2−1
8 (mod 2).

Proof. Assume s = 2k + 1 and t = 2l + 1. Then st = 4kl + 2k + 2l + 1,

st− 1

2
= 2kl + k + l ≡ k + l =

s− 1

2
+
t− 1

2
.

Moreover
s2 = 4 · (k2 + k) + 1, t2 = 4 · (l2 + l) + 1,

s2t2 = 16 · . . .+ 4 · (k2 + k + l2 + l) + 1,

s2t2 − 1

8
= 2 · . . .+ k2 + k + l2 + l

2
,

and this proves the assertion. 3

Proposition 20 Let n be odd. Then

(i) (−1n ) = (−1)
n−1
2 ,

(ii) ( 2
n) = (−1)

n2−1
8

Proof. The lemma reduces the assertions to the case n = p prime.
(i) is a direct consequence of Euler’s criterion, Proposition 19.
(ii) We have

(−1)k · k ≡
{

k, if k is even,
p− k, if k is odd,

p−1
2∏

k=1

(−1)k · k ≡ 2 · 4 · · · (p− 1) = 2
p−1
2 · (p− 1

2
)!.

103



Om the other hand

p−1
2∏

k=1

(−1)k · k = (
p− 1

2
)! · (−1)

p2−1
8 , since

p−1
2∑

k=1

k =
(p− 1)(p+ 1)

2 · 2 · 2
.

Now (p−12 )! is a product of positive integers < p, thus not a multiple of
p. Hence we may divide by it. Then from the two equations and Euler’s
criterion we get

(−1)
p2−1

8 ≡ 2
p−1
2 ≡ (

2

p
) (mod p) .

Since p ≥ 3 this congruence implies equality. 3

In particular 2 is a quadratic residue modulo the prime p if and only if
(p2 − 1)/8 is even, or p2 ≡ 1 (mod 16), or p ≡ 1 or 7 (mod 8).

Theorem 3 (Law of Quadratic Reciprocity) Let m and n be two different
odd coprime positive integers. Then

(
m

n
)(
n

m
) = (−1)

m−1
2

n−1
2 .

Here is a somewhat more comprehensible formula:

(
m

n
) =

{
−( nm) if m ≡ n ≡ 3 (mod 4),

( nm) else.

The proof is in the next section. First we illustrate the computation with
an example:

Is 7 a quadratic residue mod107? No, as the following computation
shows:

(
7

107
) = −(

107

7
) = −(

2

7
) = −1.

Likewise 7 is not a quadratic residue mod 11:

(
7

11
) = −(

11

7
) = −(

4

7
) = −(

2

7
)(

2

7
) = −1.

Hence 7 is a quadratic non-residue also mod 1177 = 11 ·107. But ( 7
1177) = 1.

From the law of quadratic reciprocity we derive the following algorithm:

104



Procedure JacobiSymbol

Input parameters:
m, n = two integers.

Output parameter:
jac = (mn ).

Instructions:
If n = 0 output jac = 0 end
If m = 0 output jac = 0 end
If gcd(m,n) > 1 output jac = 0 end
[Now m,n 6= 0 are coprime, so jac = ±1.]
jac = 1.
If n < 0 replace n by −n.
If n is even divide n by the maximum possible power 2k.
If m < 0

replace m by −m,
if n ≡ 3 (mod 4) replace jac by −jac.

[From now on m and n are coprime, and n is positive and odd.]
[In the last step m = 0 and n = 1 may occur.]
If m > n replace m by m mod n.
While n > 1:

If m is even:
Divide m by the maximum possible power 2k,
if (k is odd and n ≡ ±3 (mod 8)) replace jac by −jac.

[Now m and n are odd and coprime, 0 < m < n.]
[The law of quadratic reciprocity applies.]
If (m ≡ 3 (mod 4) and n ≡ 3 (mod 4))

replace jac by −jac.
Set d = m, m = n mod m, n = d.

The analysis of this algorithm resembles the analysis of the Euclidean
algorithm: We need at most 5 · log(m) steps, each one essentially consisting
of one integer division. Since the size of the operands rapidly decreases, the
total cost amounts to O(log2(m)2). This is significantly faster than applying
Euler’s criterion.

105



A.7 Proof of the Law of Quadratic Reciprocity

Now for the proof of the law of quadratic reciprocity. In the literature we
find many different proofs. We adapt one that uses the theory of finite fields
and follows ideas by Zolotarev (Nouvelles Annales de Mathematiques 11
(1872), 354–362) and Swan (Pacific J. Math. 12 (1962), 1099–1106).

Lemma 16 Let p an odd prime, and a and p be coprime. Then the following
statements are equivalent:

(i) a is a quadratic residue mod p.

(ii) Multiplication by a is an even permutation of Fp.

Proof. Denote the multiplication by µa : Fp −→ Fp, x 7→ ax mod p. Then
a 7→ µa is an injective group homomorphism µ : F×p −→ Sp to the full
permutation group on p elements. If a is primitive, then µa has exactly two
cycles: {0} and F×p . Since p is odd, the sign of µa is σ(µa) = (−1)p−2 = −1,
hence µa is an odd permutation.

Since a generates the group F×p , the two homomorphisms

(
•
p

) and σ ◦ µ : F×p −→ {±1}

must be identical, and this was the assertion. 3

As another tool we use the discriminant of a polynomial
f = anT

n + · · ·+ a0 ∈ K[T ]. We can compute it in any extension field
L ⊇ K that contains all the zeroes t1, . . . , tn of f by the formula

D(f) = a2n−2n ·
∏

1≤i<j≤n
(ti − tj)2.

The discriminant is invariant under all permutations of the ze-
roes. Hence it is in K. In our case this will also follow from the
explicit computation.

The ususal method of computing the discriminant from the coefficients
consists in comparing it with the resultant of f and its derivative f ′. For the
cyclotomic polynomial f = Tn−1 the computation is outstandingly simple:

Lemma 17 Assume that charK doesn’t divide n. Then the polynomial
f = Tn − 1 ∈ K[T ] has discriminant

D(f) = (−1)
n(n−1)

2 · nn.

106



Proof. Let ζ be a primitive n-th root of unity (in some suitable extension
field). Then

f =
n−1∏
i=0

(T − ζi),

D(f) =
∏

0≤i<j≤n−1
(ζi − ζj)2 = (−1)

n(n−1)
2 ·

∏
i 6=j

(ζi − ζj)

= (−1)
n(n−1)

2 ·
n−1∏
i=0

[
ζi ·

n−1∏
k=1

(1− ζk)

]
.

The polynomial

g = Tn−1 + · · ·+ 1 =

n−1∏
k=1

(T − ζk) ∈ K[T ]

satisfies g(1) = n. Hence

D(f) = (−1)
n(n−1)

2 ·
n−1∏
i=0

[ζi · n] = (−1)
n(n−1)

2 · nn,

as claimed. 3

Lemma 18 Let p be an odd prime and n an odd integer, coprime with p.
Then the following statements are equivalent:

(i) The discriminant of Tn − 1 ∈ Fp[T ] is a quadratic residue mod p.

(ii) l = (−1)(n−1)/2 · n is a quadratic residue mod p.

Proof. By Lemma 17 the discriminant is D(f) = ln. Let n = 2k + 1. Then
D(f) is the product of l with the quadratic residue l2k. 3

The discriminant of a polynomial f ∈ K[T ] is a square in an extension
field L ⊇ K that contains the zeroes of f :

D(f) = ∆(f)2 with ∆(f) = an−1n ·
∏
i<j

(ti − tj).

But ∆(f) inherits the sign of a permutation of the zeroes. Thus is not
invariant, and therefore in general is not contained in K.

Proof of the theorem. Because of Lemma 15 (i) it suffices to prove the
quadratic reciprocity law for two different odd primes p and q.

107



Let K = Fp, ζ be a primitive q-th root of unity, L = K(ζ), and
f = T q − 1. Then ζ 7→ ζp defines a permutation µp of the roots of unity,
and an automorphism of L over K. Thus:

σ(µp) ·∆(f) =
∏
i<j

(ζpi − ζpj) = ∆(f)p.

This yields a chain of equivalent statements:

(−1)
q−1
2 · q quadratic residue mod p⇐⇒ D(f) quadratic residue mod p

⇐⇒ ∆(f) ∈ Fp ⇐⇒ ∆(f) = ∆(f)p ⇐⇒ σ(µp) = 1

⇐⇒ p quadratic residue mod q.

From Proposition 20 (i) we get

(
p

q
) = (

(−1)
q−1
2 q

p
) = (

q

p
) · (−1

p
)
q−1
2 = (

q

p
) · (−1)

p−1
2

q−1
2 ,

as claimed. ♦

108



A.8 Quadratic Non-Residues

How to find a quadratic non-residue modulo a prime p? That is, an integer
a with p - a that is not a quadratic residue mod a. The preferred solution is
the smallest possible positive one. Nevertheless we start with −1:

Proposition 21 Let p ≥ 3 be prime.

(i) −1 is a quadratic non-residue mod p ⇐⇒ p ≡ 3 (mod 4).

(ii) 2 is a quadratic non-residue mod p ⇐⇒ p ≡ 3 or 5 (mod 8).

(iii) (For p ≥ 5) 3 is a quadratic non-residue mod p ⇐⇒ p ≡ 5 or 7
(mod 12).

(iv) (For p ≥ 7) 5 is a quadratic non-residue mod p ⇐⇒ p ≡ 2 or 3
(mod 5).

Proof. (i) This follows from Proposition 20. However there is an even simpler
proof:

−1 ∈M2
p ⇐⇒

∨
i∈Z

i2 ≡ −1 (mod p)⇐⇒
∨
i∈Z

ordp i = 4

⇐⇒ 4 |#F×p = p− 1⇐⇒ p ≡ 1 (mod 4).

(ii) This also follows from Proposition 20: By the adjacent remark
2 ∈M2

p ⇐⇒ p ≡ 1 or 7 (mod 8).
(iii) We use the law of quadratic reciprocity:

(
3

p
) = (−1)

p−1
2 (

p

3
) =


(−1)6k(13) = 1 if p = 12k + 1,

(−1)6k+2(23) = −1 if p = 12k + 5,

(−1)6k+3(13) = −1 if p = 12k + 7,

(−1)6k+5(23) = 1 if p = 12k + 11,

=

{
1 if p ≡ 1 or 11 (mod 12),

−1 if p ≡ 5 or 7 (mod 12).

(iv) By quadratic reciprocity

(
5

p
) = (

p

5
) =

{
1 if p ≡ 1 or 4 (mod 5),

−1 if p ≡ 2 or 3 (mod 5),

as claimed. 3

Corollary 1 241 is the unique odd prime < 400 for which none of −1, 2,
3, 5 are quadratic non-residues.

109



Corollary 2 For each odd prime p at least one of −1, 2, 3, or 5 is a
quadratic non-residue except for p ≡ 1, 49 (mod 120).

For arbitrary, not necessarily prime, modules we have some analogous
results:

Lemma 19 Let n ∈ N, n ≥ 2. Assume that ( an) = −1 for some a ∈ Z.
Then a is a quadratic non-residue in Z/nZ.

Proof. Let n = pe11 · · · perr be the prime decomposition. Then

(
a

n
) = (

a

p1
)e1 · · · ( a

pr
)er .

Hence for some k the exponent ek is odd, and ( apk ) = −1. Then a is a
quadratic non-residue mod pk. Since Fpk is a homomorphic image of Z/nZ,
a is a forteriori a quadratic non-residue mod n. 3

Corollary 3 Let n ∈ N, n ≥ 2, and not a square in Z.

(i) If n ≡ 3 (mod 4), then −1 is a quadratic non-residue in Z/nZ.

(ii) If n ≡ 5 (mod 8), then 2 is a quadratic non-residue in Z/nZ.

And so on. Unfortunately this approach doesn’t completely cover all
cases, see the remark below. Nevertheless we note that an algorithm for
finding a quadratic non-residue needs to address the cases n ≡ 1 (mod 8)
only. Again there are two variants:

• A deterministic algorithm that tests a = 2, 3, 5, . . . in order. Assuming
ERH—for the character χ = ( •n)—it is polynomial in the number
log(n) of places.

• A probabilistic algorithm that randomly chooses a and succeeds with
probability 1

2 each time, yielding ( an) = −1. Computing the Jacobi
symbol takes O(log(n)2) steps. In the average we need two trials to hit
a quadratic non-residue.

Exercise For which prime modules is 7, 11, or 13 a quadratic non-residue?
What is the smallest prime module for which this approach (together
with Proposition 21) doesn’t provide a quadratic non-residue?

Remark A result by Chowla/Fridlender/Salié says that (with a
constant c > 0) there are infinitely many primes such that
all integers a with 1 ≤ a ≤ c · log(p) are quadratic residues
mod p. Ringrose/Graham and—assuming ERH—Montgomery
have somewhat stronger versions of this result.

110



Remark There is no global polynomial (in log(n)) upper bound for the
smallest quadratic non-residue that is valid for all modules n. A very
weak but simple result is in the following proposition.

Proposition 22 Let p ≥ 3 be a prime. Then there is a quadratic non-
residue a < 1 +

√
p.

Proof. There are quadratic non-residues > 1 (and < p). Let a be the smallest
of these. Let m = d pae. Thus (m− 1) · a < p < m · a, or

0 < m · a− p < a.

Hence m · a ≡ m · a− p is a quadratic residue. This is possible only if m is
a quadratic non-residue. Since a is minimal we have a ≤ m. We conclude

(a− 1)2 < (m− 1) · a < p,

hence a− 1 <
√
p. 3

Relevant references

• V. R. Fridlender: On the least n-th power non-residue. Dokl. Akad.
Nauk. SSSR 66 (1949), 351–352.

• H. Salié: Über den kleinsten positiven quadratischen Nichtrest nach
einer Primzahl. Math. Nachr. 3 (1949), 7–8.

• N. C. Ankeney: The least quadratic nonresidue. Ann. of Math. 55
(1952), 65–72.

• H. L. Montgomery: Topics in Multiplicative Number Theory.
Springer LNM 227 (1971).

• J. Buchmann/V. Shoup: Constructing nonresidues in finite fields
and the extended Riemann hypothesis. Preprint 1990.

• S. W. Graham/C. Ringrose: Lower bounds for least quadratic non-
residues. In: B. C. Berndt et al. (Eds): Analytic Number Theory,
Birkhäuser, Boston 1990, 270–309.

• D. J. Bernstein: Faster algorithms to find non-squares modulo
worst-case integers. Preprint 2002.

111



A.9 Primitive Elements for Special Primes

For many prime modules finding quadratic non-residues has turned out to
be extremely easy. The same is true for finding primitive roots.

Proposition 23 Let p = 2p′ + 1 be a special prime. Then:

(i) a ∈ [2 . . . p−2] is a primitive root mod p if and only if it is a quadratic
non-residue.

(ii) (−1)
p′−1

2 · 2 is a primitive root mod p.

Proof. We have p ≡ 3 (mod 4), thus −1 is a quadratic non-residue by Propo-
sition 21.

(i) Since the order #F×p = p− 1 is even, moreover each primitive root is
also a quadratic non-residue. There are ϕ(p− 1) = p′ − 1 of them, thus we
have found p′ quadratic non-residues. Since p′ = p−1

2 , these must be all of
them.

(ii) In the case p′ ≡ 1 (mod 4) we have p ≡ 3 (mod 8), hence

2 = (−1)
p′−1

2 · 2 is a quadratic non-residue by Proposition 21, hence also
primitive.

In the case p′ ≡ 3 (mod 4) we have p ≡ 7 (mod 8), hence 2 is a quadratic
residue, and −1 is a quadratic non-residue again by Proposition 21. There-

fore −2 = (−1)
p′−1

2 · 2 is a quadratic non-residue, hence also primitive. 3

The effortlessness of finding a primitive root is one of several reasons
why cryptologists like special primes.

Corollary 1 Let p = 2p′ + 1 be a special prime. Then the order of 2 in F×p
is

(i) p− 1 = 2p′ if p′ ≡ 1 (mod 4),

(ii) (p− 1)/2 = p′ if p′ ≡ 3 (mod 4).

Proof. (i) 2 is a primitive root.
(ii) The divisors of #F×p are {1, 2, p′, 2p′}. Since 2 is a quadratic residue,

it is not primitive, hence the order is not 2p′. The order cannot be 1 since
2 6= 1 in Fp. And the order 3 would imply that 4 = 1, hence 3 = 0 in Fp,
hence p = 3 which ic not a special prime. 3

112



A.10 Some Group Theoretic Trivia

Here we collect some elementary results on finite groups. The exponent of a
group G is the minimum positive integer e (or ∞) such that xe = 1 for all
x ∈ G. Denote the order of a group element x by ordx (positive integer or
∞).

Lemma 20 Let G be a finite group with exponent e. Then e |#G, and e =
t := lcm({ordx | x ∈ G}).

Proof. By Lagrange’s Theorem ordx |#G for all x ∈ G, hence e |#G.
Moreover xe = 1 by definition of e, hence ordx | e for all x ∈ G. Hence t | e.
Sinc xt = 1 for all x, even t = e. 3

Lemma 21 Let G and H be groups, g ∈ G with ord g = r and h ∈ H with
ordh = s. Then ord(g, h) = lcm(r, s) in the direct product G×H.

Proof.

(ge, he) = (g, h)e = 1 in G×H ⇐⇒ ge = 1 in G and he = 1 in H.

3

Lemma 22 Let G be a group with exponent r and H be a group with expo-
nent s. Then the direct product G×H has exponent t := lcm(r, s).

Proof. Since r, s | t we have (g, h)t = (gt, ht) = (1,1) for all g ∈ G and h ∈ H.
Thus the exponent e of G×H is ≤ t.

Since (1,1) = (g, h)e = (ge, he) for all g, h, we have r | e and s | e, hence
t | e. 3

Lemma 23 Let G be a cyclic group of prime order r, and H, a cyclic group
of prime order s 6= r. Then the direct product G×H is cyclic of order r · s.

Proof. Let g ∈ G have order r, and h ∈ H have order s. Then by Lemma 21
the element (g, h) has order lcm(r, s) = r · s = #(G ×H), hence generates
G×H. 3

Lemma 24 Let G be an abelian group.

(i) Let a, b ∈ G, ord a = r, ord b = s, where r, s are finite and coprime.
Then ord(ab) = rs.

113



(ii) Let a, b ∈ G, ord a = r and ord b = s finite, t := lcm(r, s). Then
ord(ab) | t, and there is a c ∈ G with ord c = t.

(iii) Let m = max{ord a | a ∈ G} be finite. Then ord b |m for all b ∈ G. In
particular m is the exponent of G.

Proof. (i) Let k := ord(ab). From (ab)rs = (ar)s · (bs)r = 1 we conclude that
k | rs. Conversely, since aks = aks · (bs)k = (ab)ks = 1 we have r | ks, hence
r | k, and likewise s | k, hence rs | k.

(ii) Let k := ord(ab). From (ab)t = at · bt = 1 follows that k | t.
Now let pe be a prime power with pe | t, say pe | r. Then ar/p

e
has order

pe. Let t = pe11 · · · perr be the prime decomposition with different primes pi.
Then there are ci ∈ G with ord ci = peii . Since these orders are pairwise
coprime, the element c = c1 · · · cr has order t by (i).

(iii) Let ord b = s. Then by (ii) there is a c ∈ G with ord c = lcm(m, s).
Hence lcm(m, s) ≤ m, hence = m, thus s |m. 3

Remarks

1. For non-abelian groups all three statements (i)–(iii) may be false. As
an example consider the symmetric group S4 of order 4! = 24. The
possible orders of its elements are 1 (for the trivial permutation), 2
for permutations consisting of one or two disjoint 2-cycles, 3 for all
3-cycles, and 4 for all 4-cycles. Thus the maximum order is 4, but
the exponent = the lcm of all orders is 12 (by Lemma 20). The cycle
σ = (1 2 3) has order r = 3, the transposition τ = (3 4) has order
s = 2. Their product is the 4-cycle (2 3 4 1) of order 4 6= lcm(r, s) = 6,
and there doesn’t exist any permutation of order 6.

2. In a nontrivial abelian group the order of a product ab in general differs
from the lcm of the single orders: Take a 6= 1 and b = a−1.

114



A.11 Blum Integers

Let n = pq with different primes p, q ≥ 3. Then

Mn
∼= Mp ×Mq, M2

n
∼= M2

p ×M2
q ,

Mn/M2
n
∼= Mp/M2

p ×Mq/M2
q
∼= Z2 ×Z2,

in particular #(Mn/M2
n) = 4. The subgroups M2

n ≤ M+
n and M+

n ≤ Mn

are proper and hence of index 2. The ring Z/nZ contains exactly 4 roots of
unity: 1,−1, τ,−τ , where

τ ≡ −1 (mod p), τ ≡ 1 (mod q),

thus ( τn) = −1. In other words: The kernel of the squaring homomorphism
q : Mn −→M2

n is K = {±1,±τ}, isomorphic with the Klein four-group.
An integer of the form n = pq with different primes p, q ≡ 3 (mod 4) is

called Blum integer.

Examples

1. 1177 in A.6.

2. If p is a special prime, then p ≡ 3 (mod 4). Therefore a product of
two special primes is a Blum integer. Let us call such an integer
a special Blum integer.

In general, if n = pq with different odd prime numbers p and q, then
M2
n
∼= M2

p ×M2
q has order p−1

2 ·
q−1
2 , and this number is odd if and only if p

and q both are ≡ 3 (mod 4). Hence:

Lemma 25 A product n of two odd prime numbers is a Blum integer if
and only if the group M2

n of quadratic residues has odd order.

For a Blum integer −1 is a quadratic non-residue in Mp and Mq, hence
also in Mn. But

(
−1

n
) = (

−1

p
)(
−1

q
) = (−1)2 = 1,

thus −1 ∈M+
n . Hence

(
−x
n

) = (
−1

n
)(
x

n
) = (

x

n
)

for all x. Moreover M2
n∩K = {1}, thus the restriction of q to M2

n is injective,
hence bijective, and Mn is the direct product

Mn = K ×M2
n, M+

n = {±1} ×M2
n.

Each quadratic residue a ∈ M2
n has exactly one square root in each of the

four cosets of Mn/M2
n. If x ∈ M2

n is one of them, then the other ones are
−x, τx, −τx. This shows:

115



Proposition 24 Let n be a Blum integer. Then:

(i) If x2 ≡ y2 (mod n) for x, y ∈Mn, and x,−x, y,−y mod n are pairwise
distinct, then (xn) = −( yn).

(ii) The squaring homorphism q is an automorphism of M2
n.

(iii) Each a ∈ M2
n has has exactly two square roots in M+

n . If x is one of
them, then −x mod n is the other one, and exactly one of these two
is itself a quadratic residue. Moreover a has exactly two more square
roots, and these are contained in M−n .

Thus from the four square roots of a quadratic residue x exactly one is
itself a quadratic residue. We consider this one as something special, and
denote it by

√
x mod n. The least significant bit of x—also characterized as

the parity of x, or as x mod 2—is denoted by lsb(x).

Corollary 1 Let x ∈M+
n . Then x is a quadratic residue if and only if

lsb(x) = lsb(
√
x2 mod n).

Proof. If x is a quadratic residue, then x =
√
x2 mod n. Now assume

x is a quadratic non-residue, and let y =
√
x2 mod n. By (iii) we have

y = −x mod n = n− x. Since n is odd, x and y have different parities. 3

The problem of deciding quadratic residuosity mod n remains hard.
Only if the prime decomposition n = pq is known there is an efficient solu-
tion:

x ∈M2
n ⇐⇒ (

x

p
) = (

x

q
) = 1.

We know of no efficient procedure that works without using the prime fac-
tors. Presumably deciding quadratic residuosity is equivalent with factoring
in the sense of complexity theory. Generally believed to be true is the

Quadratic Residuosity Assumption: Deciding quadratic
residuosity for Blum integers is hard.

A mathematical sound definition of “hard” is in Section B.4.

116



A.12 The Multiplicative Group Modulo Special
Blum Integers

Let p = 2p′ + 1 be a special prime. Then the multiplicative group Mp = F×p
is cyclic of order p − 1 = 2p′. Its subgroup M2

p ≤ Mp of quadratic residues
has index 2 and is itself cyclic, its order being the prime p′. Thus

Mp
∼= Z2p′ , #Mp = ϕ(p) = λ(p) = 2p′,

M2
p
∼= Zp′ , #M2

p = p′.

Let n = pq be a special Blum integer, p = 2p′ + 1 and q = 2q′ + 1 being
special primes. Then we know that

Mn
∼= Mp ×Mq, #Mn = ϕ(n) = 4p′q′,

M2
n
∼= M2

p ×M2
q , #M2

n = p′q′.

Moreover λ(n) = lcm(2p′, 2q′) = 2p′q′. Since M2
n as a direct product of two

cyclic groups of coprime orders is itself cyclic of order p′q′ we conclude:

Proposition 25 Let n be a special Blum integer as above. Then the group
M2
n of quadratic residues mod n is cyclic of order p′q′ and consists of

(i) 1 element of order 1,

(ii) p′ − 1 elements x of order p′, characterized by x mod q = 1,

(iii) q′ − 1 elements x of order q′, characterized by x mod p = 1,

(iv) (p′ − 1)(q′ − 1) elements of order p′q′.

Note that these numbers sum up to p′q′, the order of M2
n.

Corollary 1 Let n be a special Blum integer with prime factors p = 2p′+1
and q = 2q′ + 1. Then the probability η = P{x ∈ M2

n | ord(x) = p′q′} that a
randomly chosen quadratic residue mod n has the maximum possible order
p′q′ is

η = 1− p′ + q′ − 1

p′q′
.

If we follow the common usage of choosing (RSA or) BBS modules n as
products of two l-bit primes, or p′ and q′ as (l − 1)-bit primes, then

2l−1 < p′ < 2l, 2l−1 < q′ < 2l,

2l < p′ + q′ − 1 < 2l+1, 22l−1 < p′ · q′ < 22l,

1

2l
=

2l

22l
<

p′ + q′ − 1

p′q′
<

2l+1

22l−1
=

1

22l−3
=

8

2l
.

We resume

117



Corollary 2 Let n be a special Blum integer with prime factors p = 2p′+1
and q = 2q′ + 1 of bitlengths l. Then the probability η is bounded by

1− 8

2l
< η < 1− 1

2l
.

The deviation of this probability from 1 is asymptotically negligible: If we
choose a random quadratic residue x (say as the square of a random element
of Mn), then with overwhelming probability its order has the maximum
possible value. However there is an easy test: Check that neither x mod p
nor x mod q is 1.

Since Mn is the direct product of M2
n with a Klein four-group we also

know the orders of the elements of Mn and their numbers, in particular

Corollary 3 Let n be a special Blum integer with prime factors p = 2p′+1
and q = 2q′+ 1. Then Mn has exactly (p′− 1)(q′− 1) elements of order p′q′,
and exactly 3(p′ − 1)(q′ − 1) elements of order 2p′q′.

118



A.13 The BBS Sequence

Let n be a positive integer. Let x be invertible mod n, and let s := ord(x)
be its order in the multiplicative group mod n.

Lemma 26 For each integer r we have

r ≡ 1 (mod s)⇐⇒ xr ≡ x (mod n).

Proof. “=⇒”: Let r = 1 + c · s. Then

xr = x1+c·s ≡ x · 1 = x mod n.

“⇐=”: Dividing mod n by the invertible element x gives

xr−1 ≡ 1 (mod n),

hence s | r − 1. 3

Now let x0 := x, and define the BBS sequence of integers xi by the
recursive formula xi = x2i−1 for i ≥ 1, or

(1) xi = x2
i

mod n for i = 0, 1, 2, 3, . . .

Lemma 27 The BBS sequence (xi) is purely periodic if and only if
s = ord(x) is odd. Then the period ν equals the multiplicative order of
2 mod s.

Proof. Assume the sequence is purely periodic with period ν. Then ν is
minimal with xν ≡ x0 (mod n). Hence

x2
ν

0 ≡ x0 (mod n).

Thus s | (2ν − 1) by Lemma 26, and ν is minimal with this property too, or
with 2ν ≡ 1 mod s. In particular s is odd, and ν is the order of 2 mod s.

Conversely assume that s is odd. Then 2 is invertible mods. Let
µ be the multiplicative order of 2 mod s. Then 2µ ≡ 1 mod s, hence
xµ = x2

µ ≡ x0 mod n by Lemma 26, thus the sequence is purely periodic. 3

Proposition 26 Let n be a Blum integer and x be a quadratic residue
6= 1 mod n. Then the BBS sequence xi as defined in (1) is purely periodic of
period ν = ords(2).

119



Proof. Assume n = pq where p and q are two different odd primes ≡ 3 mod 4.
Let p = 4k+ 3 and q = 4l+ 3 with integers k and l. Then the multiplicative
group Mn has order (p − 1)(q − 1) = (4k + 2)(4l + 2). The group M2

n of
quadratic residues has index 4 in Mn, hence order (2k + 1)(2l + 1), an odd
integer. Thus every quadratic residue has odd order, and Lemma 27 applies
for x. 3

Corollary 4 Let n be a Blum integer and ν, the period of a BBS sequence.
Then ν | λ(λ(n)) where λ is the Carmichael function.

Proof. By Proposition 26 we have ν = ords(2) | λ(s). Moreover s =
ordn(x) | λ(n), hence λ(s) | λ(λ(n)). We conclude that ν | λ(λ(n)). 3

120



A.14 The BBS Sequence for Superspecial Blum
Integers

Again we get the most satisfying results in the superspecial case:

Definition A superspecial Blum integer is a product of two different
superspecial primes.

Examples The two smallest superspecial primes are p = 23 (with p′ = 11,
p′′ = 5) and q = 47 (with q′ = 23, q′′ = 11). Thus the smallest
superspecial Blum integer is n = 23 · 47 = 1081. By Section 2.1 we
are confident (however don’t know for sure) that there are very many
superspecial Blum integers.

Now let n = pq be a superspecial Blum integer with p = 2p′+1 = 4p′′+3
and q = 2q′ + 1 = 4q′′ + 3. Form the BBS sequence (1) for an initial value
x ∈M2

n − {1}. Then s = ordn(x) takes one of the values p′, q′, or p′q′, the last
on with extremely high probability, and the first two may be excluded by an
easy check. The period of the BBS sequence is ν = ords(2) by Proposition 26,
and we may assume that s = p′q′. By the chinese remainder theorem and
Lemma 21

ν = lcm(ordp′(2), ordq′(2))

By the Corollary of Proposition 23 in Section A.9

ordp′(2) =

{
2p′′ if p′′ ≡ 1 (mod 4)),

p′′ if p′′ ≡ 3 (mod 4)),

ordq′(2) =

{
2q′′ if q′′ ≡ 1 (mod 4)),

q′′ if q′′ ≡ 3 (mod 4)),

Thus finally we have shown:

Proposition 27 Let n be a superspecial Blum integer. Let x be a quadratic
residue mod n with x 6≡ 1 (mod p) and x 6≡ 1 (mod q). Then the BBS se-
quence mod n for x has period

ν =

{
p′′q′′ if p′′ ≡ q′′ ≡ 3 (mod 4),

2p′′q′′ otherwise.

If p′′ and q′′ are (l−2)-bit primes (hence > 2l−3, and n is an l-bit integer),
then the period is > 2l−2 or about n/4.

121



Appendix B

Complexity Theory for
Cryptology

For (at least) three reasons “ordinary” complexity theory (using Turing
machines) is insufficient for cryptologic needs:

1. Complexity theory primarily addresses the question whether the worst
case of a problem is hard (i. e. a solution is not efficiently computable).
However to preclude an efficient cryptanalysis we want the normal case
to be hard. We saw that the existence of strong basic cryptographic
functions implies P 6= NP, but conversely this inequality (if true)
would not suffice to prove the existence of strong cryptography.

From other parts of mathematics we are warned that a worst case
scenario may not suffice to make a problem hard. For instance the
Newton algorithm for determining roots of polynomials and the sim-
plex method for linear optimization are hard in the worst case, but
very efficient in the normal case.

2. The cryptanalyst is free to use probabilistic algorithms (“Monte Carlo”
algorithms) that are very efficient but don’t give a correct result in all
cases. We saw several examples for number theoretic problems.

The exact mathematical treatment uses concepts from probability the-
ory: Parts of the input are taken from a probability space Ω. The
results are statements on the distribution of the output.

3. Moreover the cryptanalyst is free to adapt her methods to the concrete
problem at hand. She doesn’t necessarily need a universal algorithm
that is efficient for all instances of her problem. For example she could
choose a different algorithm depending on the key length. Thus we
have to consider non-uniform models of computation.

As a consequence the ordinary theory of Turing machines is insufficient
for formalizing complexity theory as it is needed in cryptology. We could

122



remedy this shortage by considering families of Turing machines—say a
different one for each input length—, and also admitting probabilistic input.

However an alternative model of computation, using Boolean circuits,
has a simpler, more intuitive description and a more direct and elegant ap-
plication: families of probabilistic circuits (FPC for short). Realizing com-
mon algorithms by circuits is distinctly simpler and more intuitive than
programming a Turing machine.

123



B.1 Probabilistic Boolean Circuits

A Boolean circuit describes an algorithm in the form of a flow chart that
connects the single bit operations, see Appendix C.12 of Part II. It has two
supplemental generalizations:

a probabilistic circuit formalizes probabilistic algorithms,

a family of circuits allows to express the complexity of an algorithm for
increasing input sizes.

First we formalize the concept of a probabilistic algorithm for computing
a map

f : A −→ F s2
on a set A. To this end we consider maps (to be represented by circuits)

C : A× Ω −→ F s2

where Ω is a probability space. We look at the probabilities that C “com-
putes” f(x) or f :

P ({ω | C(x, ω) = f(x)}) (“locally” at x) and

P ({(x, ω) | C(x, ω) = f(x)}) (“globally”)

that we want to be “significantly” > 1
2s , the probability of hitting a value

in Fs2 by pure chance. In the local case we average over Ω for fixed x, in
the global case we average also over x ∈ A. In general we assume that the
probability spaces Ω and A × Ω are finite and (in most cases) uniformly
distributed.

In order to describe probabilistic algorithms we need circuits with three
different types of input nodes:

• r deterministic input nodes that are seeded by an input tuple
x ∈ F r2 , or x from a subset A ⊆ Fr2,

• some constant input nodes, each a priori set to 0 or 1,

• k probabilistic input nodes that are seeded by an element (“event”)
of the Laplacean probability space Ω = F k2 (corresponding to k “coin
tosses”), or by an element of a subset Ω ⊆ F k2 .—Sometimes also other
probability distributions on Ω, different from the uniform distribution,
might be taken into account.

The theory aims at statements on the probabilities of the output values
y ∈ F s2 .

124



Examples

1. Searching a quadratic non-residue for an n bit prime module p. Here
we choose a random b ∈ [1 . . . p− 1] and compute ( bp) (the Legendre
symbol that is 1 for quadratic residues, −1 for quadratic non-residues).
The success probability is 1

2 , the cost O(n2) (see Appendix A.8).

More generally we ask whether an h-tuple

(b1, . . . , bh) ∈ Ω = [1 . . . p− 1]h

of independently choosen elements contains a quadratic non-residue.
There is a probabilistic circuit (for the given p) without deterministic
input nodes (but with some constant input nodes to input p),

C : Fhn2 −→ Fn2 ,

C(ω) =

{
bi, the first bi that is a quadratic non-residue,

0 if none of the bi is a quadratic non-residue,

of size O(hn2) that outputs a quadratic non-residue with probability
1− 1

2h
. Note the deviation of this example from the definition above:

Here C doesn’t compute an explicitly given function f but provides
output with a certain property.

2. The strong pseudoprime test: Here the input is taken from the set
A ⊆ [3 . . . 2n − 1] of odd integers. We want to compute the primality
indicator function

f : A −→ F2, f(m) =

{
1 if m is composite,

0 if m is prime.

The probabilistic input consists of a base a ∈ Ω = [2 . . . 2n − 1]. The
strong pseudoprime test is represented by a circuit

C : Fn2 × Fn2 −→ F2

of size O(n3), and yields the result 1 if m fails (then m is proven to be
composite), 0 if m passes (then m is possibly prime). Thus C outputs
the correct result only with a certain probability.

Now we formalize the property of a (probabilistic) circuit C of computing
the correct value of f(x) ∈ Fs2 with a probability that “significantly” differs
from a random guess: Given ε ≥ 0, a circuit

C : F r2 × Ω −→ Fs2

125



(with r deterministic input nodes) has an ε-advantage for the computation
of f(x) or f if

P ({ω ∈ Ω | C(x, ω) = f(x)}) ≥ 1

2s
+ ε (“local case”) or

P ({(x, ω) ∈ A× Ω | C(x, ω) = f(x)}) ≥ 1

2s
+ ε (“global case”).

Thus in the global case the probability with respect to ω of getting a cor-
rect result is additionally averaged over x ∈ A. The advantage 0, or the
probability 1

2s , corresponds to randomly guessing the result.
C has an error probability δ for computing f(x) or f if

P ({ω ∈ Ω | C(x, ω) = f(x)}) ≥ 1− δ or

P ({(x, ω) ∈ A× Ω | C(x, ω) = f(x)}) ≥ 1− δ.

Examples

1. For searching a quadratic non-residue mod p we have

P ({ω ∈ Ω | C(ω) is a quadratic non-residue}) = 1− 1

2h
.

Thus the circuit has an (12 −
1
2h

)-advantage and an error probability

of 1
2h

.

2. For the strong pseudoprime test we have for fixed m

P ({ω ∈ Ω | C(m,ω) = f(m)})

{
≥ 3

4 if m is composite,

= 1 if m is prime.

Averaging over m we get

P ({(m,ω) ∈ A× Ω | C(m,ω) = f(m}) ≥ 3

4
,

hence an 1
4 -advantage and an error probability of 1

4 . (Since the number
of composite integers is much larger than the number of primes, the
value 1

4 is not significantly changed by averaging over m.)

126



B.2 Polynomial Size Families of Circuits

A circuit has a fixed number of input nodes. Therefore it can process inputs
of a fixed length only, in contrast with a Turing machine. However to assess
the efficiency of an algorithm in general we have to estimate the increase of
cost for increasing input sizes.

To this end we consider families (Cn)n∈N of circuits with an increasing
number of deterministic input nodes. Then the cost of a computation may
be expressed as a function of the length of the input.

More exactly we define: A family of probabilistic circuits (FPC) is
a family C = (Cn)n∈N,

(1) Cn : Fr(n)2 × Fk(n)2 −→ Fs(n)2 ,

where the circuit Cn has r(n) deterministic input nodes, and k(n) proba-
bilistic ones. Of course, if all k(n) = 0, we speak of a family of deterministic
circuits.

A polynomial size family of probabilistic circuits (PPC) is an
FPC C = (Cn)n∈N, such that #Cn ≤ α(n) for all n ∈ N with a polynomial
α ∈ N[X] (non-negative integer coefficients). In particular the number of
input nodes of all kinds, as well as the number s(n) of output nodes, is poly-
nomially bounded. (We don’t require that the functions r, k, s themselves
are polynomials.)

Even in the deterministic case this model of computation might be able
to compute more functions than the common model of Turing machines
(and it is in fact), since it allows to choose a different algorithm for each
input length. For this reason we also speak of a “non-uniform computational
model”. On first sight this feature seems not so pleasant. Nevertheless it is
particularly realistic for cryptanalysis: Depending on the input size n the
cryptanalyst may choose a suitable algorithm.

If a Turing machine computation in polynomial time is possible, then
for the same problem there is a PPC also. The reverse statement is not true,
although we only know “artificial” counterexamples.

Should any NP-complete problem be computable by a PPC, then so
would be all the other ones. Virtually nobody believes in this possibility.

Non-uniform complexity may be modelled by Turing machines also,
simply admitting a different Turing machine for each input length. More-
over we could also define probabilistic Turing machines. After all preferring
the Shannon model of circuits over Turing machines is a matter of taste.

A computational problem is called hard if there is no PPC that solves
it with a distinguished advantage; we’ll make this definition more precise in
the next sections. The “hard number theoretic problems” from Chapter 5,
such as prime decomposition, are conjectured to be hard in this sense.

We know already that the basic operations on integers are computable by
(even deterministic) PPC’s. And therefore so are all algorithms on integers

127



that are efficiently computable in the naive sense, using only “polynomially
many” elementary arithmetic operations.

128



B.3 Efficient Algorithms

To generalize the results from Section B.1 we first define the concepts of
advantage and error probability for PPCs.

Let L ⊆ F∗2 be a language over the binary alphabet F2, and set
Ln := L ∩ Fn2 . Let f be a map

(2) f : L −→ F∗2 with f(Lr(n)) ⊆ Fs(n)2

where r(n) is the monotonically increasing sequence of indices i with Li 6= ∅.
We want to compute this map by a PPC as in (1).

Examples

1. The function f(x, y, z) := xy mod z for n-bit integers x, y, z is com-
putable by a (deterministic) circuit

Cn : F3n
2 −→ Fn2

of size #Cn = O(n3) (with error probability 0). Here r(n) = 3n and
s(n) = n.

2. Let L be the set of (binary encoded) odd integers ≥ 3, and f : L −→ F2

be the primality indicator as in Section B.1. There we saw a PPC for
the strong pseudoprime test of size O(n3) with advantage 1

4 and error
probability 1

4 (constant with respect to n). Using t bases we get a size
of O(tn3), and an error probability of 1

4t .

Definition 1 A function ϕ : N −→ R+ is called (asymptotically) negli-
gible if for each nonconstant polynomial η ∈ N[X]

ϕ(n) ≤ 1

η(n)
for almost all n ∈ N.

In other words, ϕ(n) tends to 0 faster than the inverse of any polynomial.

Example An obvious example is ϕ(n) = 2−n.

Definition 2 Sei f : L −→ F∗2 be as in (2). Let C be a PPC that computes
f on Lr(n) with an error probability of εn. Assume εn is a negligible
function of n. Then C is called an efficient probabilistic algorithm
for f .

f is called (probabilistically) efficiently computable if there is an
efficient algorithm for f .

129



This definition substantiates the idea of an algorithm that is “efficient for
almost all input tuples” (or input strings if the input is taken from a language
L).

For Rabin’s primality test, that is the repeated execution of the strong
pseudoprime test, we satisfy this requirement by letting the number t of
bases grow with n. In order to get a polynomial family we upgrade t to a
polynomial τ ∈ N[X]. Then Cn has n deterministic input nodes, and nτ(n)
probabilistic ones. The size is O(n3τ(n)), and the error probability, 1

4τ(n)
.

Thus we have shown:

Proposition 28 Rabin’s primality test is an efficient probabilistic algo-
rithm for deciding primality.

130



B.4 Hard Problems

Exactly defining what a hard problem is is somewhat more tricky. We want
to characterize a problem that has no efficient solution for almost all in-
put tuples (or strings). Simply negating the property “efficient” is clearly
insufficient. Somewhat better is the requirement that the advantage of an
algorithm approaches 0 with increasing n. But also this is not yet a suitable
definition since the advantage describes a lower bound only.

A better requirement is the non-existence of an advantage that ap-
proaches 0 too slowly. “Too slowly” is

1

η(n)
with an arbitrary polynomial η ∈ N[X].

“Slow enough” is for instance the inverse exponential finction 1/2n.
Moreover there should be “almost no” exceptions, or the set of excep-

tions should be “sparse”. Now we try to translate these ideas into an exact
definition.

For x ∈ Lr(n) we consider the probability

px := P ({ω ∈ Ωk(n) | Cn(x, ω) = f(x)}),

and the set of input strings x for which Cn has an ε-advantage:

Lr(n)(ε) := {x ∈ Lr(n) | px ≥
1

2s(n)
+ ε}.

For a polynomial η ∈ N[X] the set Lr(n)(
1

η(n)) consists of the input strings

x for which C computes f(x) with advantage 1
η(n) . Thus the exceptional set

for η is

L[f,C,η] :=
⋃
n∈N

Lr(n)(
1

η(n)
).

We denote it as “advantageous set for f , C, η”. Its components should
become more and more marginal with increasing n. The definition is:

Definition 3 A subset A ⊆ L is called sparse if

#An
#Ln

is negligible.

Remarks and Examples

1. If #An = c is constant, and Ln = Fn2 , then A is sparse in L for

#An
#Ln

=
c

2n
.

131



2. If #An grows at most polynomially, but #Ln grows faster than any
polynomial, then A is sparse in L.

3. If #An = c ·#Ln is a fixed proportion, then A is not sparse in L.

4. If L = N, and A is the set of primes (in binary coding), then by the
prime number theorem

#An ≈
2n−1

n · ln(2)
=

#Ln
n · ln(2)

.

Hence the set of primes is not sparse in N.

5. No known efficient algorithm is able to factorize a non-sparse subset
of the set M of all products of primes whose lengths differ by at most
one bit.

Definition 4 Let f be as in (2). Then f is called hard if for each PPC as
in (1) and for each polynomial η ∈ N[X] the advantageous set L[f,C,η]

is a sparse subset of L.

Examples

1. The conjecture that prime decomposition of integers is hard makes
sense by remark 5.

2. Quadratic residuosity conjecture: Let B be the set of Blum in-
tegers (products of two primes ≡ 3 (mod 4)),

L = {(m, a) |m ∈ B, a ∈M+
n },

(for M+
n see Appendix A.5) and let

f : L −→ F2

be the indicator function

f(m, a) =

{
1 if a is a quadratic residue modm,

0 else.

Then f is hard. (A forteriori when we more generally admit a ∈Mn.)

132



B.5 Basic Cryptographic Functions

Now the theoretic basis suffices for an exact definition of one-way func-
tions and strong symmetric ciphers. Note that the “functions” or “maps”
in these definitions are infinite families with growing input size. There is no
mathematically sound definition of one-way or hash functions, or of strong
symmetric ciphers, for a fixed input size, as we assumed in treating these
concepts in a naive way in Section 4.1 and Chapters 5 and 6

Definition 5 Let f : L −→ F∗2 be as in (2). A right inverse of f is a map
g : f(L) −→ L ⊆ F∗2 with f(g(y)) = y for all y ∈ f(L). In other words
g finds pre-images of f . We call f a one-way function if each right
inverse of f is hard.

Adapting this definition the conjecture that the discrete exponential
function in finite prime fields is hard makes sense.

Now for the definition of a strong cipher. An “ordinary” block cipher is
a map

F : Fr2 × Fq2 −→ Fr2.

The corresponding decryption function is a map

G : Fr2 × Fq2 −→ Fr2

with G(F (x, k), k) = x for all x ∈ F r2 and k ∈ F q2 .
An attack with known plaintext finds a key k ∈ F q2 with F (x, k) = y,

given x, y ∈ Fr2. We formalize this by a map

H : Fr2 × Fr2 −→ Fq2

with F (x,H(x, y)) = y for all x, y ∈ Fr2 with y ∈ F (x,Fq2) (“possible pairs”
(x, y)).

Exercise Give an exact definition of a possible pair.

A more general attack uses several, say s, plaintext blocks. So it defines
a map

H : Frs2 × Frs2 −→ Fq2
with F (xi, H(xi, yi)) = yi for i = 1, . . . s for all possible x, y ∈ Frs2 .

Now we give a definition in terms of complexity theory.

Definition 6 A symmetric cipher is a family F = (Fn)n∈N of block ci-
phers

Fn : Fr(n)2 × Fq(n)2 −→ Fr(n)2

with strictly monotonically increasing functions r and q, such that

Fn(•, k) is bijective for each k ∈ Fq(n)2 , and

133



• F is efficiently computable,

• there is an efficiently computable family G = (Gn)n∈N of corre-
sponding decryption functions.

Definition 7 An known plaintext attack on a symmetric cipher F is a
family H = (Hn)n∈N of maps

Hn : Fr(n)s(n)2 × Fr(n)s(n)2 −→ Fq(n)2

with
Fn(xi, Hn(xi, yi)) = yi for i = 1, . . . , s(n)

for all possible pairs x, y ∈ Fr(n)s(n)2 .

F is called a strong symmetric cipher if each known plaintext at-
tack on F is hard.

Defining a hash function is even more tricky. We omit it.

134


	The RSA Cipher and its Algorithmic Foundations
	Description of the RSA Cipher
	The Binary Power Algorithm
	The Carmichael Function
	Suitable Parameters for RSA

	Cryptanalysis of RSA
	The Prime Number Theorem
	Computing the Key and Factorization
	The Probability of Flops
	Factoring Algorithms
	Iteration Attack
	Breaking Single Ciphertexts
	Re-Use of a Module
	Small Exponents
	The Signature Trap
	More Attacks

	Primality Tests
	The Pseudoprime Test
	Strong Pseudoprimes
	Miller's Primality Test
	The Extended Riemann Hypothesis (ERH)
	Rabin's Probabilistic Primality Test
	RSA and Pseudoprimes
	The AKS Primality Test
	The AKS Algorithm

	The Discrete Logarithm with Cryptographic Applications
	The Discrete Logarithm
	Diffie-Hellman Key Exchange
	The Man in the Middle
	Secret Communication without Key Exchange
	ElGamal Cipher—Idea
	Computing Discrete Logarithms

	Hard Number Theoretic Problems
	Discrete Logarithm and Factorization
	Square Roots and Factorization
	Square Roots in Finite Prime Fields
	Square Roots for Prime Power Modules
	Square Roots for Composite Modules

	Equivalences of Basic Cryptographic Functions
	One-Way Functions
	Hash Functions
	Conversion Tricks
	Physical Complexity
	Turing Machines
	The Class NP

	Primitive Elements and Quadratic Residues
	Primitive Elements for Powers of 2
	Primitive Elements for Prime Modules
	Primitive Elements for Prime Powers
	The Structure of the Multiplicative Group
	The Jacobi Symbol
	Quadratic Reciprocity
	Proof of the Law of Quadratic Reciprocity
	Quadratic Non-Residues
	Primitive Elements for Special Primes
	Some Group Theoretic Trivia
	Blum Integers
	The Multiplicative Group Modulo Special Blum Integers
	The BBS Sequence
	The BBS Sequence for Superspecial Blum Integers

	Complexity Theory for Cryptology
	Probabilistic Boolean Circuits
	Polynomial Size Families of Circuits
	Efficient Algorithms
	Hard Problems
	Basic Cryptographic Functions


