A.4 The Structure of the Multiplicative Group

The previous results allow a complete characterization of the modules n for which the multiplicative group \mathbb{M}_n is cyclic:

Corollary 2 (GAUSS 1799) For $n \ge 2$ the multiplicative group \mathbb{M}_n is cyclic if and only if n is one of the integers 2, 4, p^e , or $2p^e$ with an odd prime p.

Proof. This follows from Proposition 18 Corollary 1 and the following Lemma 14 \diamond

Lemma 14 If $m, n \geq 3$ are coprime, then \mathbb{M}_{mn} is not cyclic, and $\lambda(mn) < \varphi(mn)$.

Proof. If $n \ge 3$, then $\varphi(n)$ is even. For a prime power this follows from the explicit formula. In the general case we reason by the multiplicativity of the φ -function. We conclude

$$\begin{split} & \mathrm{kgV}(\varphi(m),\varphi(n)) < \varphi(m)\,\varphi(n) = \varphi(mn), \\ & \lambda(mn) = \mathrm{kgV}(\lambda(m),\lambda(n)) \leq \mathrm{kgV}(\varphi(m),\varphi(n)) < \varphi(mn). \end{split}$$

Hence \mathbb{M}_{mn} is not cyclic. \diamond

Now the structure of the multiplicative group is completely known also for a general module. Let us denote the cyclic group of order d by \mathcal{Z}_d .

Theorem 2 Let $n = 2^e p_1^{e_1} \cdots p_r^{e_r}$ be the prime decomposition of the integer $n \ge 2$ with different odd primes p_1, \ldots, p_r , and $e \ge 0, r \ge 0, e_1, \ldots, e_r \ge 1$. Let $q_i = p_i^{e_i}$ and $q'_i = p_i^{e_i-1}(p_i-1)$ for $i = 1, \ldots, r$. Then

$$\mathbb{M}_n \cong \begin{cases} \mathcal{Z}_{q'_1} \times \dots \times \mathcal{Z}_{q'_r}, & \text{if } e = 0 \text{ or } 1, \\ \mathcal{Z}_2 \times \mathcal{Z}_{2^{e-2}} \times \mathcal{Z}_{q'_1} \times \dots \times \mathcal{Z}_{q'_r}, & \text{if } e \ge 2. \end{cases}$$

We find a primitive element $a \mod n$ by choosing primitive elements $a_0 \mod 2^e$ (if $e \ge 2$) and $a_i \mod q_i$ and solving the simultaneous congruences $a \equiv a_i \pmod{q_i}$, and if applicable $a \equiv a_0 \pmod{2^e}$.

Proof. All this follows from the chinese remainder theorem. \diamond

Exercise Derive a general formula for $\lambda(n)$.