A. 4 The Structure of the Multiplicative Group

The previous results allow a complete characterization of the modules n for which the multiplicative group \mathbb{M}_{n} is cyclic:

Corollary 2 (Gauss 1799) For $n \geq 2$ the multiplicative group \mathbb{M}_{n} is cyclic if and only if n is one of the integers 2,4 , p^{e}, or $2 p^{e}$ with an odd prime p.

Proof. This follows from Proposition 18, Corollary 1, and the following Lemma $14 \diamond$

Lemma 14 If $m, n \geq 3$ are coprime, then $\mathbb{M}_{m n}$ is not cyclic, and $\lambda(m n)<\varphi(m n)$.

Proof. If $n \geq 3$, then $\varphi(n)$ is even. For a prime power this follows from the explicit formula. In the general case we reason by the multiplicativity of the φ-function. We conclude

$$
\begin{gathered}
\operatorname{kgV}(\varphi(m), \varphi(n))<\varphi(m) \varphi(n)=\varphi(m n), \\
\lambda(m n)=\operatorname{kgV}(\lambda(m), \lambda(n)) \leq \operatorname{kgV}(\varphi(m), \varphi(n))<\varphi(m n) .
\end{gathered}
$$

Hence $\mathbb{M}_{m n}$ is not cyclic.
Now the structure of the multiplicative group is completely known also for a general module. Let us denote the cyclic group of order d by \mathcal{Z}_{d}.

Theorem 2 Let $n=2^{e} p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$ be the prime decomposition of the integer $n \geq 2$ with different odd primes p_{1}, \ldots, p_{r}, and $e \geq 0, r \geq 0, e_{1}, \ldots, e_{r} \geq 1$. Let $q_{i}=p_{i}^{e_{i}}$ and $q_{i}^{\prime}=p_{i}^{e_{i}-1}\left(p_{i}-1\right)$ for $i=1, \ldots, r$. Then

$$
\mathbb{M}_{n} \cong \begin{cases}\mathcal{Z}_{q_{1}^{\prime}} \times \cdots \times \mathcal{Z}_{q_{r}^{\prime}}, & \text { if } e=0 \text { or } 1, \\ \mathcal{Z}_{2} \times \mathcal{Z}_{2^{e-2}} \times \mathcal{Z}_{q_{1}^{\prime}} \times \cdots \times \mathcal{Z}_{q_{r}^{\prime}}, & \text { if } e \geq 2 .\end{cases}
$$

We find a primitive element $a \bmod n$ by choosing primitive elements $a_{0} \bmod 2^{e}$ (if $e \geq 2$) and $a_{i} \bmod q_{i}$ and solving the simultaneous congruences $a \equiv a_{i}\left(\bmod q_{i}\right)$, and if applicable $a \equiv a_{0}\left(\bmod 2^{e}\right)$.

Proof. All this follows from the chinese remainder theorem.

Exercise Derive a general formula for $\lambda(n)$.

