A.9 Primitive Elements for Special Primes

For many prime modules finding quadratic non-residues has turned out to be extremely easy. The same is true for finding primitive roots.

Proposition 23 Let p = 2p' + 1 be a special prime. Then:

- (i) $a \in [2 \dots p-2]$ is a primitive root mod p if and only if it is a quadratic non-residue.
- (ii) $(-1)^{\frac{p'-1}{2}} \cdot 2$ is a primitive root mod p.

Proof. We have $p \equiv 3 \pmod{4}$, thus -1 is a quadratic non-residue by Proposition 21

(i) Since the order $\#\mathbb{F}_p^{\times} = p-1$ is even, moreover each primitive root is also a quadratic non-residue. There are $\varphi(p-1) = p'-1$ of them, thus we have found p' quadratic non-residues. Since $p' = \frac{p-1}{2}$, these must be all of them.

(ii) In the case $p' \equiv 1 \pmod{4}$ we have $p \equiv 3 \pmod{8}$, hence $2 = (-1)^{\frac{p'-1}{2}} \cdot 2$ is a quadratic non-residue by Proposition 21 hence also primitive.

In the case $p' \equiv 3 \pmod{4}$ we have $p \equiv 7 \pmod{8}$, hence 2 is a quadratic residue, and -1 is a quadratic non-residue again by Proposition 21. Therefore $-2 = (-1)^{\frac{p'-1}{2}} \cdot 2$ is a quadratic non-residue, hence also primitive. \diamond

The effortlessness of finding a primitive root is one of several reasons why cryptologists like special primes.

Corollary 1 Let p = 2p' + 1 be a special prime. Then the order of 2 in \mathbb{F}_p^{\times} is

- (i) $p-1 = 2p' \text{ if } p' \equiv 1 \pmod{4}$,
- (ii) $(p-1)/2 = p' \text{ if } p' \equiv 3 \pmod{4}$.

Proof. (i) 2 is a primitive root.

(ii) The divisors of $\#\mathbb{F}_p^{\times}$ are $\{1, 2, p', 2p'\}$. Since 2 is a quadratic residue, it is not primitive, hence the order is not 2p'. The order cannot be 1 since $2 \neq 1$ in \mathbb{F}_p . And the order 3 would imply that 4 = 1, hence 3 = 0 in \mathbb{F}_p , hence p = 3 which ic not a special prime. \diamond