A. 9 Primitive Elements for Special Primes

For many prime modules finding quadratic non-residues has turned out to be extremely easy. The same is true for finding primitive roots.

Proposition 23 Let $p=2 p^{\prime}+1$ be a special prime. Then:
(i) $a \in[2 \ldots p-2]$ is a primitive root $\bmod p$ if and only if it is a quadratic non-residue.
(ii) $(-1)^{\frac{p^{\prime}-1}{2}} \cdot 2$ is a primitive root $\bmod p$.

Proof. We have $p \equiv 3(\bmod 4)$, thus -1 is a quadratic non-residue by Proposition 21
(i) Since the order $\# \mathbb{F}_{p}^{\times}=p-1$ is even, moreover each primitive root is also a quadratic non-residue. There are $\varphi(p-1)=p^{\prime}-1$ of them, thus we have found p^{\prime} quadratic non-residues. Since $p^{\prime}=\frac{p-1}{2}$, these must be all of them.
(ii) In the case $p^{\prime} \equiv 1(\bmod 4)$ we have $p \equiv 3(\bmod 8)$, hence $2=(-1)^{\frac{p^{\prime}-1}{2}} \cdot 2$ is a quadratic non-residue by Proposition 21, hence also primitive.

In the case $p^{\prime} \equiv 3(\bmod 4)$ we have $p \equiv 7(\bmod 8)$, hence 2 is a quadratic residue, and -1 is a quadratic non-residue again by Proposition 21. Therefore $-2=(-1)^{\frac{p^{\prime}-1}{2}} \cdot 2$ is a quadratic non-residue, hence also primitive.

The effortlessness of finding a primitive root is one of several reasons why cryptologists like special primes.

Corollary 1 Let $p=2 p^{\prime}+1$ be a special prime. Then the order of 2 in \mathbb{F}_{p}^{\times} is
(i) $p-1=2 p^{\prime}$ if $p^{\prime} \equiv 1(\bmod 4)$,
(ii) $(p-1) / 2=p^{\prime}$ if $p^{\prime} \equiv 3(\bmod 4)$.

Proof. (i) 2 is a primitive root.
(ii) The divisors of $\# \mathbb{F}_{p}^{\times}$are $\left\{1,2, p^{\prime}, 2 p^{\prime}\right\}$. Since 2 is a quadratic residue, it is not primitive, hence the order is not $2 p^{\prime}$. The order cannot be 1 since $2 \neq 1$ in \mathbb{F}_{p}. And the order 3 would imply that $4=1$, hence $3=0$ in \mathbb{F}_{p}, hence $p=3$ which ic not a special prime.

