A. 12 The Multiplicative Group Modulo Special Blum Integers

Let $p=2 p^{\prime}+1$ be a special prime. Then the multiplicative group $\mathbb{M}_{p}=\mathbb{F}_{p}^{\times}$ is cyclic of order $p-1=2 p^{\prime}$. Its subgroup $\mathbb{M}_{p}^{2} \leq \mathbb{M}_{p}$ of quadratic residues has index 2 and is itself cyclic, its order being the prime p^{\prime}. Thus

$$
\begin{aligned}
\mathbb{M}_{p} \cong \mathcal{Z}_{2 p^{\prime}}, & \# \mathbb{M}_{p}=\varphi(p)=\lambda(p)=2 p^{\prime} \\
\mathbb{M}_{p}^{2} \cong \mathcal{Z}_{p^{\prime}}, & \# \mathbb{M}_{p}^{2}=p^{\prime} .
\end{aligned}
$$

Let $n=p q$ be a special BLum integer, $p=2 p^{\prime}+1$ and $q=2 q^{\prime}+1$ being special primes. Then we know that

$$
\begin{array}{ll}
\mathbb{M}_{n} \cong \mathbb{M}_{p} \times \mathbb{M}_{q}, & \# \mathbb{M}_{n}=\varphi(n)=4 p^{\prime} q^{\prime} \\
\mathbb{M}_{n}^{2} \cong \mathbb{M}_{p}^{2} \times \mathbb{M}_{q}^{2}, & \# \mathbb{M}_{n}^{2}=p^{\prime} q^{\prime}
\end{array}
$$

Moreover $\lambda(n)=\operatorname{lcm}\left(2 p^{\prime}, 2 q^{\prime}\right)=2 p^{\prime} q^{\prime}$. Since \mathbb{M}_{n}^{2} as a direct product of two cyclic groups of coprime orders is itself cyclic of order $p^{\prime} q^{\prime}$ we conclude:

Proposition 25 Let n be a special Blum integer as above. Then the group \mathbb{M}_{n}^{2} of quadratic residues $\bmod n$ is cyclic of order $p^{\prime} q^{\prime}$ and consists of
(i) 1 element of order 1 ,
(ii) $p^{\prime}-1$ elements x of order p^{\prime}, characterized by $x \bmod q=1$,
(iii) $q^{\prime}-1$ elements x of order q^{\prime}, characterized by $x \bmod p=1$,
(iv) $\left(p^{\prime}-1\right)\left(q^{\prime}-1\right)$ elements of order $p^{\prime} q^{\prime}$.

Note that these numbers sum up to $p^{\prime} q^{\prime}$, the order of \mathbb{M}_{n}^{2}.
Corollary 1 Let n be a special Blum integer with prime factors $p=2 p^{\prime}+1$ and $q=2 q^{\prime}+1$. Then the probability $\eta=P\left\{x \in \mathbb{M}_{n}^{2} \mid \operatorname{ord}(x)=p^{\prime} q^{\prime}\right\}$ that a randomly chosen quadratic residue $\bmod n$ has the maximum possible order $p^{\prime} q^{\prime}$ is

$$
\eta=1-\frac{p^{\prime}+q^{\prime}-1}{p^{\prime} q^{\prime}} .
$$

If we follow the common usage of choosing (RSA or) BBS modules n as products of two l-bit primes, or p^{\prime} and q^{\prime} as $(l-1)$-bit primes, then

$$
\begin{gathered}
2^{l-1}<p^{\prime}<2^{l}, \quad 2^{l-1}<q^{\prime}<2^{l}, \\
2^{l}<p^{\prime}+q^{\prime}-1<2^{l+1}, \quad 2^{2 l-1}<p^{\prime} \cdot q^{\prime}<2^{2 l}, \\
\frac{1}{2^{l}}=\frac{2^{l}}{2^{2 l}}<\frac{p^{\prime}+q^{\prime}-1}{p^{\prime} q^{\prime}}<\frac{2^{l+1}}{2^{2 l-1}}=\frac{1}{2^{2 l-3}}=\frac{8}{2^{l}} .
\end{gathered}
$$

We resume

Corollary 2 Let n be a special BLUM integer with prime factors $p=2 p^{\prime}+1$ and $q=2 q^{\prime}+1$ of bitlengths l. Then the probability η is bounded by

$$
1-\frac{8}{2^{l}}<\eta<1-\frac{1}{2^{l}}
$$

The deviation of this probability from 1 is asymptotically negligible: If we choose a random quadratic residue x (say as the square of a random element of \mathbb{M}_{n}), then with overwhelming probability its order has the maximum possible value. However there is an easy test: Check that neither $x \bmod p$ $\operatorname{nor} x \bmod q$ is 1 .

Since \mathbb{M}_{n} is the direct product of \mathbb{M}_{n}^{2} with a KLEIN four-group we also know the orders of the elements of \mathbb{M}_{n} and their numbers, in particular

Corollary 3 Let n be a special BLUM integer with prime factors $p=2 p^{\prime}+1$ and $q=2 q^{\prime}+1$. Then \mathbb{M}_{n} has exactly $\left(p^{\prime}-1\right)\left(q^{\prime}-1\right)$ elements of order $p^{\prime} q^{\prime}$, and exactly $3\left(p^{\prime}-1\right)\left(q^{\prime}-1\right)$ elements of order $2 p^{\prime} q^{\prime}$.

