A. 8 Quadratic Non-Residues

How to find a quadratic non-residue modulo a prime p ? That is, an integer a with $p \nmid a$ that is not a quadratic residue $\bmod a$. The preferred solution is the smallest possible positive one. Nevertheless we start with -1 :

Proposition 21 Let $p \geq 3$ be prime.
(i) -1 is a quadratic non-residue $\bmod p \Longleftrightarrow p \equiv 3(\bmod 4)$.
(ii) 2 is a quadratic non-residue $\bmod p \Longleftrightarrow p \equiv 3$ or $5(\bmod 8)$.
(iii) (For $p \geq 5) 3$ is a quadratic non-residue $\bmod p \Longleftrightarrow p \equiv 5$ or 7 $(\bmod 12)$.
(iv) (For $p \geq 7) 5$ is a quadratic non-residue $\bmod p \Longleftrightarrow p \equiv 2$ or 3 $(\bmod 5)$.

Proof. (i) This follows from Proposition 20 . However there is an even simpler proof:

$$
\begin{aligned}
-1 \in \mathbb{M}_{p}^{2} & \Longleftrightarrow \bigvee_{i \in \mathbb{Z}} i^{2} \equiv-1 \quad(\bmod p) \Longleftrightarrow \bigvee_{i \in \mathbb{Z}} \operatorname{ord}_{p} i=4 \\
& \Longleftrightarrow 4 \mid \# \mathbb{F}_{p}^{\times}=p-1 \Longleftrightarrow p \equiv 1 \quad(\bmod 4)
\end{aligned}
$$

(ii) This also follows from Proposition 20: By the adjacent remark $2 \in \mathbb{M}_{p}^{2} \Longleftrightarrow p \equiv 1$ or $7(\bmod 8)$.
(iii) We use the law of quadratic reciprocity:

$$
\begin{aligned}
\left(\frac{3}{p}\right)=(-1)^{\frac{p-1}{2}}\left(\frac{p}{3}\right) & = \begin{cases}(-1)^{6 k}\left(\frac{1}{3}\right)=1 & \text { if } p=12 k+1, \\
(-1)^{6 k+2}\left(\frac{2}{3}\right)=-1 & \text { if } p=12 k+5, \\
(-1)^{6 k+3}\left(\frac{1}{3}\right)=-1 & \text { if } p=12 k+7, \\
(-1)^{6 k+5}\left(\frac{2}{3}\right)=1 & \text { if } p=12 k+11,\end{cases} \\
& =\left\{\begin{array}{lll}
1 & \text { if } p \equiv 1 \text { or } 11 & (\bmod 12), \\
-1 & \text { if } p \equiv 5 \text { or } 7 & (\bmod 12) .
\end{array}\right.
\end{aligned}
$$

(iv) By quadratic reciprocity

$$
\left(\frac{5}{p}\right)=\left(\frac{p}{5}\right)= \begin{cases}1 & \text { if } p \equiv 1 \text { or } 4 \quad(\bmod 5) \\ -1 & \text { if } p \equiv 2 \text { or } 3 \quad(\bmod 5)\end{cases}
$$

as claimed.

Corollary 1241 is the unique odd prime <400 for which none of $-1,2$, 3, 5 are quadratic non-residues.

Corollary 2 For each odd prime p at least one of $-1,2$, 3, or 5 is a quadratic non-residue except for $p \equiv 1,49(\bmod 120)$.

For arbitrary, not necessarily prime, modules we have some analogous results:

Lemma 19 Let $n \in \mathbb{N}$, $n \geq 2$. Assume that $\left(\frac{a}{n}\right)=-1$ for some $a \in \mathbb{Z}$. Then a is a quadratic non-residue in $\mathbb{Z} / n \mathbb{Z}$.

Proof. Let $n=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$ be the prime decomposition. Then

$$
\left(\frac{a}{n}\right)=\left(\frac{a}{p_{1}}\right)^{e_{1}} \cdots\left(\frac{a}{p_{r}}\right)^{e_{r}} .
$$

Hence for some k the exponent e_{k} is odd, and $\left(\frac{a}{p_{k}}\right)=-1$. Then a is a quadratic non-residue $\bmod p_{k}$. Since $\mathbb{F}_{p_{k}}$ is a homomorphic image of $\mathbb{Z} / n \mathbb{Z}$, a is a forteriori a quadratic non-residue $\bmod n$.

Corollary 3 Let $n \in \mathbb{N}, n \geq 2$, and not a square in \mathbb{Z}.
(i) If $n \equiv 3(\bmod 4)$, then -1 is a quadratic non-residue in $\mathbb{Z} / n \mathbb{Z}$.
(ii) If $n \equiv 5(\bmod 8)$, then 2 is a quadratic non-residue in $\mathbb{Z} / n \mathbb{Z}$.

And so on. Unfortunately this approach doesn't completely cover all cases, see the remark below. Nevertheless we note that an algorithm for finding a quadratic non-residue needs to address the cases $n \equiv 1(\bmod 8)$ only. Again there are two variants:

- A deterministic algorithm that tests $a=2,3,5, \ldots$ in order. Assuming ERH-for the character $\chi=\left(\frac{\bullet}{n}\right)$-it is polynomial in the number $\log (n)$ of places.
- A probabilistic algorithm that randomly chooses a and succeeds with probability $\frac{1}{2}$ each time, yielding $\left(\frac{a}{n}\right)=-1$. Computing the JACOBI symbol takes $\mathrm{O}\left(\log (n)^{2}\right)$ steps. In the average we need two trials to hit a quadratic non-residue.

Exercise For which prime modules is 7,11 , or 13 a quadratic non-residue? What is the smallest prime module for which this approach (together with Proposition 21) doesn't provide a quadratic non-residue?

Remark A result by Chowla/Fridlender/Salié says that (with a constant $c>0$) there are infinitely many primes such that all integers a with $1 \leq a \leq c \cdot \log (p)$ are quadratic residues $\bmod p$. Ringrose/Graham and-assuming ERH-Montgomery have somewhat stronger versions of this result.

Remark There is no global polynomial (in $\log (n)$) upper bound for the smallest quadratic non-residue that is valid for all modules n. A very weak but simple result is in the following proposition.

Proposition 22 Let $p \geq 3$ be a prime. Then there is a quadratic nonresidue $a<1+\sqrt{p}$.

Proof. There are quadratic non-residues >1 (and $<p)$. Let a be the smallest of these. Let $m=\left\lceil\frac{p}{a}\right\rceil$. Thus $(m-1) \cdot a<p<m \cdot a$, or

$$
0<m \cdot a-p<a
$$

Hence $m \cdot a \equiv m \cdot a-p$ is a quadratic residue. This is possible only if m is a quadratic non-residue. Since a is minimal we have $a \leq m$. We conclude

$$
(a-1)^{2}<(m-1) \cdot a<p
$$

hence $a-1<\sqrt{p}$. \diamond

Relevant references

- V. R. Fridlender: On the least n-th power non-residue. Dokl. Akad. Nauk. SSSR 66 (1949), 351-352.
- H. SALIÉ: Über den kleinsten positiven quadratischen Nichtrest nach einer Primzahl. Math. Nachr. 3 (1949), 7-8.
- N. C. Ankeney: The least quadratic nonresidue. Ann. of Math. 55 (1952), 65-72.
- H. L. Montgomery: Topics in Multiplicative Number Theory. Springer LNM 227 (1971).
- J. Buchmann/V. Shoup: Constructing nonresidues in finite fields and the extended Riemann hypothesis. Preprint 1990.
- S. W. Graham/C. Ringrose: Lower bounds for least quadratic nonresidues. In: B. C. Berndt et al. (Eds): Analytic Number Theory, Birkhäuser, Boston 1990, 270-309.
- D. J. Bernstein: Faster algorithms to find non-squares modulo worst-case integers. Preprint 2002.

