
A.7 Proof of the Law of Quadratic Reciprocity

Now for the proof of the law of quadratic reciprocity. In the literature we
find many di↵erent proofs. We adapt one that uses the theory of finite fields
and follows ideas by Zolotarev (Nouvelles Annales de Mathematiques 11
(1872), 354–362) and Swan (Pacific J. Math. 12 (1962), 1099–1106).

Lemma 16 Let p an odd prime, and a and p be coprime. Then the following

statements are equivalent:

(i) a is a quadratic residue mod p.

(ii) Multiplication by a is an even permutation of Fp.

Proof. Denote the multiplication by µa : Fp �! Fp, x 7! ax mod p. Then
a 7! µa is an injective group homomorphism µ : F⇥

p �! Sp to the full
permutation group on p elements. If a is primitive, then µa has exactly two
cycles: {0} and F⇥

p . Since p is odd, the sign of µa is �(µa) = (�1)p�2 = �1,
hence µa is an odd permutation.

Since a generates the group F⇥
p , the two homomorphisms

(
•

p
) and � � µ : F⇥

p �! {±1}

must be identical, and this was the assertion. 3

As another tool we use the discriminant of a polynomial
f = anTn + · · ·+ a0 2 K[T ]. We can compute it in any extension field
L ◆ K that contains all the zeroes t1, . . . , tn of f by the formula

D(f) = a2n�2
n ·

Y

1i<jn

(ti � tj)
2.

The discriminant is invariant under all permutations of the ze-
roes. Hence it is in K. In our case this will also follow from the
explicit computation.

The ususal method of computing the discriminant from the coe�cients
consists in comparing it with the resultant of f and its derivative f 0. For the
cyclotomic polynomial f = Tn

�1 the computation is outstandingly simple:

Lemma 17 Assume that charK doesn’t divide n. Then the polynomial

f = Tn
� 1 2 K[T ] has discriminant

D(f) = (�1)
n(n�1)

2 · nn.
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Proof. Let ⇣ be a primitive n-th root of unity (in some suitable extension
field). Then

f =
n�1Y

i=0

(T � ⇣i),

D(f) =
Y

0i<jn�1

(⇣i � ⇣j)2 = (�1)
n(n�1)

2 ·

Y

i 6=j

(⇣i � ⇣j)

= (�1)
n(n�1)

2 ·

n�1Y

i=0

"
⇣i ·

n�1Y

k=1

(1� ⇣k)

#
.

The polynomial

g = Tn�1 + · · ·+ 1 =
n�1Y

k=1

(T � ⇣k) 2 K[T ]

satisfies g(1) = n. Hence

D(f) = (�1)
n(n�1)

2 ·

n�1Y

i=0

[⇣i · n] = (�1)
n(n�1)

2 · nn,

as claimed. 3

Lemma 18 Let p be an odd prime and n an odd integer, coprime with p.
Then the following statements are equivalent:

(i) The discriminant of Tn
� 1 2 Fp[T ] is a quadratic residue mod p.

(ii) l = (�1)(n�1)/2
· n is a quadratic residue mod p.

Proof. By Lemma 17 the discriminant is D(f) = ln. Let n = 2k + 1. Then
D(f) is the product of l with the quadratic residue l2k. 3

The discriminant of a polynomial f 2 K[T ] is a square in an extension
field L ◆ K that contains the zeroes of f :

D(f) = �(f)2 with �(f) = an�1
n ·

Y

i<j

(ti � tj).

But �(f) inherits the sign of a permutation of the zeroes. Thus is not
invariant, and therefore in general is not contained in K.

Proof of the theorem. Because of Lemma 15 (i) it su�ces to prove the
quadratic reciprocity law for two di↵erent odd primes p and q.
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Let K = Fp, ⇣ be a primitive q-th root of unity, L = K(⇣), and
f = T q

� 1. Then ⇣ 7! ⇣p defines a permutation µp of the roots of unity,
and an automorphism of L over K. Thus:

�(µp) ·�(f) =
Y

i<j

(⇣pi � ⇣pj) = �(f)p.

This yields a chain of equivalent statements:

(�1)
q�1
2 · q quadratic residue mod p () D(f) quadratic residue mod p

() �(f) 2 Fp () �(f) = �(f)p () �(µp) = 1

() p quadratic residue mod q.

From Proposition 20 (i) we get

(
p

q
) = (

(�1)
q�1
2 q

p
) = (

q

p
) · (

�1

p
)
q�1
2 = (

q

p
) · (�1)

p�1
2

q�1
2 ,

as claimed. }
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