
A.11 Blum Integers

Let n = pq with di↵erent primes p, q � 3. Then

Mn
⇠= Mp ⇥Mq, M2

n
⇠= M2

p ⇥M2
q ,

Mn/M2
n
⇠= Mp/M2

p ⇥Mq/M2
q
⇠= Z2 ⇥ Z2,

in particular #(Mn/M2
n) = 4. The subgroups M2

n  M+
n and M+

n  Mn

are proper and hence of index 2. The ring Z/nZ contains exactly 4 roots of
unity: 1,�1, ⌧,�⌧ , where

⌧ ⌘ �1 (mod p), ⌧ ⌘ 1 (mod q),

thus ( ⌧n) = �1. In other words: The kernel of the squaring homomorphism
q : Mn �! M2

n is K = {±1,±⌧}, isomorphic with the Klein four-group.
An integer of the form n = pq with di↵erent primes p, q ⌘ 3 (mod 4) is

called Blum integer.

Examples

1. 1177 in A.6.

2. If p is a special prime, then p ⌘ 3 (mod 4). Therefore a product of
two special primes is a Blum integer. Let us call such an integer
a special Blum integer.

In general, if n = pq with di↵erent odd prime numbers p and q, then
M2

n
⇠= M2

p ⇥M2
q has order p�1

2 ·
q�1
2 , and this number is odd if and only if p

and q both are ⌘ 3 (mod 4). Hence:

Lemma 25 A product n of two odd prime numbers is a Blum integer if

and only if the group M2
n of quadratic residues has odd order.

For a Blum integer �1 is a quadratic non-residue in Mp and Mq, hence
also in Mn. But

(
�1

n
) = (

�1

p
)(
�1

q
) = (�1)2 = 1,

thus �1 2 M+
n . Hence

(
�x

n
) = (

�1

n
)(
x

n
) = (

x

n
)

for all x. Moreover M2
n\K = {1}, thus the restriction of q to M2

n is injective,
hence bijective, and Mn is the direct product

Mn = K ⇥M2
n, M+

n = {±1}⇥M2
n.

Each quadratic residue a 2 M2
n has exactly one square root in each of the

four cosets of Mn/M2
n. If x 2 M2

n is one of them, then the other ones are
�x, ⌧x, �⌧x. This shows:
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Proposition 24 Let n be a Blum integer. Then:

(i) If x2 ⌘ y2 (mod n) for x, y 2 Mn, and x,�x, y,�y mod n are pairwise

distinct, then (xn) = �( yn).

(ii) The squaring homorphism q is an automorphism of M2
n.

(iii) Each a 2 M2
n has has exactly two square roots in M+

n . If x is one of

them, then �x mod n is the other one, and exactly one of these two

is itself a quadratic residue. Moreover a has exactly two more square

roots, and these are contained in M�
n .

Thus from the four square roots of a quadratic residue x exactly one is
itself a quadratic residue. We consider this one as something special, and
denote it by

p
x mod n. The least significant bit of x—also characterized as

the parity of x, or as x mod 2—is denoted by lsb(x).

Corollary 1 Let x 2 M+
n . Then x is a quadratic residue if and only if

lsb(x) = lsb(
p

x2 mod n).

Proof. If x is a quadratic residue, then x =
p

x2 mod n. Now assume
x is a quadratic non-residue, and let y =

p

x2 mod n. By (iii) we have
y = �x mod n = n� x. Since n is odd, x and y have di↵erent parities. 3

The problem of deciding quadratic residuosity mod n remains hard.
Only if the prime decomposition n = pq is known there is an e�cient solu-
tion:

x 2 M2
n () (

x

p
) = (

x

q
) = 1.

We know of no e�cient procedure that works without using the prime fac-
tors. Presumably deciding quadratic residuosity is equivalent with factoring
in the sense of complexity theory. Generally believed to be true is the

Quadratic Residuosity Assumption: Deciding quadratic
residuosity for Blum integers is hard.

A mathematical sound definition of “hard” is in Section B.7.
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