A. 11 Blum Integers

Let $n=p q$ with different primes $p, q \geq 3$. Then

$$
\begin{gathered}
\mathbb{M}_{n} \cong \mathbb{M}_{p} \times \mathbb{M}_{q}, \quad \mathbb{M}_{n}^{2} \cong \mathbb{M}_{p}^{2} \times \mathbb{M}_{q}^{2} \\
\mathbb{M}_{n} / \mathbb{M}_{n}^{2} \cong \mathbb{M}_{p} / \mathbb{M}_{p}^{2} \times \mathbb{M}_{q} / \mathbb{M}_{q}^{2} \cong \mathcal{Z}_{2} \times \mathcal{Z}_{2}
\end{gathered}
$$

in particular $\#\left(\mathbb{M}_{n} / \mathbb{M}_{n}^{2}\right)=4$. The subgroups $\mathbb{M}_{n}^{2} \leq \mathbb{M}_{n}^{+}$and $\mathbb{M}_{n}^{+} \leq \mathbb{M}_{n}$ are proper and hence of index 2 . The ring $\mathbb{Z} / n \mathbb{Z}$ contains exactly 4 roots of unity: $1,-1, \tau,-\tau$, where

$$
\tau \equiv-1 \quad(\bmod p), \quad \tau \equiv 1 \quad(\bmod q),
$$

thus $\left(\frac{\tau}{n}\right)=-1$. In other words: The kernel of the squaring homomorphism $\mathbf{q}: \mathbb{M}_{n} \longrightarrow \mathbb{M}_{n}^{2}$ is $K=\{ \pm 1, \pm \tau\}$, isomorphic with the Klein four-group.

An integer of the form $n=p q$ with different primes $p, q \equiv 3(\bmod 4)$ is called Blum integer.

Examples

1. 1177 in A. 6
2. If p is a special prime, then $p \equiv 3(\bmod 4)$. Therefore a product of two special primes is a BLum integer. Let us call such an integer a special Blum integer.

In general, if $n=p q$ with different odd prime numbers p and q, then $\mathbb{M}_{n}^{2} \cong \mathbb{M}_{p}^{2} \times \mathbb{M}_{q}^{2}$ has order $\frac{p-1}{2} \cdot \frac{q-1}{2}$, and this number is odd if and only if p and q both are $\equiv 3(\bmod 4)$. Hence:

Lemma 25 A product n of two odd prime numbers is a BLUM integer if and only if the group \mathbb{M}_{n}^{2} of quadratic residues has odd order.

For a Blum integer -1 is a quadratic non-residue in \mathbb{M}_{p} and \mathbb{M}_{q}, hence also in \mathbb{M}_{n}. But

$$
\left(\frac{-1}{n}\right)=\left(\frac{-1}{p}\right)\left(\frac{-1}{q}\right)=(-1)^{2}=1,
$$

thus $-1 \in \mathbb{M}_{n}^{+}$. Hence

$$
\left(\frac{-x}{n}\right)=\left(\frac{-1}{n}\right)\left(\frac{x}{n}\right)=\left(\frac{x}{n}\right)
$$

for all x. Moreover $\mathbb{M}_{n}^{2} \cap K=\{1\}$, thus the restriction of \mathbf{q} to \mathbb{M}_{n}^{2} is injective, hence bijective, and \mathbb{M}_{n} is the direct product

$$
\mathbb{M}_{n}=K \times \mathbb{M}_{n}^{2}, \quad \mathbb{M}_{n}^{+}=\{ \pm 1\} \times \mathbb{M}_{n}^{2}
$$

Each quadratic residue $a \in \mathbb{M}_{n}^{2}$ has exactly one square root in each of the four cosets of $\mathbb{M}_{n} / \mathbb{M}_{n}^{2}$. If $x \in \mathbb{M}_{n}^{2}$ is one of them, then the other ones are $-x, \tau x,-\tau x$. This shows:

Proposition 24 Let n be a BLUM integer. Then:
(i) If $x^{2} \equiv y^{2}(\bmod n)$ for $x, y \in \mathbb{M}_{n}$, and $x,-x, y,-y \bmod n$ are pairwise distinct, then $\left(\frac{x}{n}\right)=-\left(\frac{y}{n}\right)$.
(ii) The squaring homorphism \mathbf{q} is an automorphism of \mathbb{M}_{n}^{2}.
(iii) Each $a \in \mathbb{M}_{n}^{2}$ has has exactly two square roots in \mathbb{M}_{n}^{+}. If x is one of them, then $-x \bmod n$ is the other one, and exactly one of these two is itself a quadratic residue. Moreover a has exactly two more square roots, and these are contained in \mathbb{M}_{n}^{-}.

Thus from the four square roots of a quadratic residue x exactly one is itself a quadratic residue. We consider this one as something special, and denote it by $\sqrt{x} \bmod n$. The least significant bit of x-also characterized as the parity of x, or as $x \bmod 2$-is denoted by $\operatorname{lsb}(x)$.

Corollary 1 Let $x \in \mathbb{M}_{n}^{+}$. Then x is a quadratic residue if and only if

$$
\operatorname{lsb}(x)=\operatorname{lnb}\left(\sqrt{x^{2}} \bmod n\right)
$$

Proof. If x is a quadratic residue, then $x=\sqrt{x^{2}} \bmod n$. Now assume x is a quadratic non-residue, and let $y=\sqrt{x^{2}} \bmod n$. By (iii) we have $y=-x \bmod n=n-x$. Since n is odd, x and y have different parities.

The problem of deciding quadratic residuosity $\bmod n$ remains hard. Only if the prime decomposition $n=p q$ is known there is an efficient solution:

$$
x \in \mathbb{M}_{n}^{2} \Longleftrightarrow\left(\frac{x}{p}\right)=\left(\frac{x}{q}\right)=1
$$

We know of no efficient procedure that works without using the prime factors. Presumably deciding quadratic residuosity is equivalent with factoring in the sense of complexity theory. Generally believed to be true is the

Quadratic Residuosity Assumption: Deciding quadratic residuosity for BLUM integers is hard.

A mathematical sound definition of "hard" is in Section B.7.

