A. 13 The BBS Sequence

Let n be a positive integer. Let x be invertible $\bmod n$, and let $s:=\operatorname{ord}(x)$ be its order in the multiplicative group $\bmod n$.

Lemma 26 For each integer r we have

$$
r \equiv 1 \quad(\bmod s) \Longleftrightarrow x^{r} \equiv x \quad(\bmod n)
$$

Proof. " $\Longrightarrow "$: Let $r=1+c \cdot s$. Then

$$
x^{r}=x^{1+c \cdot s} \equiv x \cdot 1=x \bmod n .
$$

$" \Longleftarrow ":$ Dividing $\bmod n$ by the invertible element x gives

$$
x^{r-1} \equiv 1 \quad(\bmod n)
$$

hence $s \mid r-1$. \diamond

Now let $x_{0}:=x$, and define the BBS sequence of integers x_{i} by the recursive formula $x_{i}=x_{i-1}^{2}$ for $i \geq 1$, or

$$
\begin{equation*}
x_{i}=x^{2^{i}} \bmod n \quad \text { for } i=0,1,2,3, \ldots \tag{1}
\end{equation*}
$$

Lemma 27 The BBS sequence $\left(x_{i}\right)$ is purely periodic if and only if $s=\operatorname{ord}(x)$ is odd. Then the period ν equals the multiplicative order of $2 \bmod s$.

Proof. Assume the sequence is purely periodic with period ν. Then ν is minimal with $x_{\nu} \equiv x_{0}(\bmod n)$. Hence

$$
x_{0}^{2^{\nu}} \equiv x_{0} \quad(\bmod n)
$$

Thus $s \mid\left(2^{\nu}-1\right)$ by Lemma 26, and ν is minimal with this property too, or with $2^{\nu} \equiv 1 \bmod s$. In particular s is odd, and ν is the order of $2 \bmod s$.

Conversely assume that s is odd. Then 2 is invertible $\bmod s$. Let μ be the multiplicative order of $2 \bmod s$. Then $2^{\mu} \equiv 1 \bmod s$, hence $x_{\mu}=x^{2^{\mu}} \equiv x_{0} \bmod n$ by Lemma 26 , thus the sequence is purely periodic.

Proposition 26 Let n be a BLUM integer and x be a quadratic residue $\neq 1 \bmod n$. Then the $B B S$ sequence x_{i} as defined in (1) is purely periodic of period $\nu=\operatorname{ord}_{s}(2)$.

Proof. Assume $n=p q$ where p and q are two different odd primes $\equiv 3 \bmod 4$. Let $p=4 k+3$ and $q=4 l+3$ with integers k and l. Then the multiplicative group \mathbb{M}_{n} has order $(p-1)(q-1)=(4 k+2)(4 l+2)$. The group \mathbb{M}_{n}^{2} of quadratic residues has index 4 in \mathbb{M}_{n}, hence order $(2 k+1)(2 l+1)$, an odd integer. Thus every quadratic residue has odd order, and Lemma 27 applies for x.

Corollary 4 Let n be a BLUM integer and ν, the period of a BBS sequence. Then $\nu \mid \lambda(\lambda(n))$ where λ is the CARMIChaEl function.

Proof. By Proposition 26 we have $\nu=\operatorname{ord}_{s}(2) \mid \lambda(s)$. Moreover $s=$ $\operatorname{ord}_{n}(x) \mid \lambda(n)$, hence $\lambda(s) \mid \lambda(\lambda(n))$. We conclude that $\nu \mid \lambda(\lambda(n))$.

