A.13 The BBS Sequence

Let n be a positive integer. Let x be invertible mod n, and let $s := \operatorname{ord}(x)$ be its order in the multiplicative group mod n.

Lemma 26 For each integer r we have

 $r \equiv 1 \pmod{s} \iff x^r \equiv x \pmod{n}.$

Proof. " \Longrightarrow ": Let $r = 1 + c \cdot s$. Then

$$x^r = x^{1+c \cdot s} \equiv x \cdot 1 = x \mod n.$$

" \Leftarrow ": Dividing mod *n* by the invertible element *x* gives

$$x^{r-1} \equiv 1 \pmod{n},$$

hence $s \mid r - 1$. \diamond

Now let $x_0 := x$, and define the **BBS sequence** of integers x_i by the recursive formula $x_i = x_{i-1}^2$ for $i \ge 1$, or

(1)
$$x_i = x^{2^i} \mod n \quad \text{for } i = 0, 1, 2, 3, \dots$$

Lemma 27 The BBS sequence (x_i) is purely periodic if and only if $s = \operatorname{ord}(x)$ is odd. Then the period ν equals the multiplicative order of $2 \mod s$.

Proof. Assume the sequence is purely periodic with period ν . Then ν is minimal with $x_{\nu} \equiv x_0 \pmod{n}$. Hence

$$x_0^{2^{\nu}} \equiv x_0 \pmod{n}.$$

Thus $s \mid (2^{\nu} - 1)$ by Lemma 26, and ν is minimal with this property too, or with $2^{\nu} \equiv 1 \mod s$. In particular s is odd, and ν is the order of 2 mod s.

Conversely assume that s is odd. Then 2 is invertible mods. Let μ be the multiplicative order of 2 mod s. Then $2^{\mu} \equiv 1 \mod s$, hence $x_{\mu} = x^{2^{\mu}} \equiv x_0 \mod n$ by Lemma 26, thus the sequence is purely periodic. \diamond

Proposition 26 Let n be a BLUM integer and x be a quadratic residue $\neq 1 \mod n$. Then the BBS sequence x_i as defined in (1) is purely periodic of period $\nu = \operatorname{ord}_s(2)$.

Proof. Assume n = pq where p and q are two different odd primes $\equiv 3 \mod 4$. Let p = 4k + 3 and q = 4l + 3 with integers k and l. Then the multiplicative group \mathbb{M}_n has order (p-1)(q-1) = (4k+2)(4l+2). The group \mathbb{M}_n^2 of quadratic residues has index 4 in \mathbb{M}_n , hence order (2k+1)(2l+1), an odd integer. Thus every quadratic residue has odd order, and Lemma 27 applies for x. \diamond

Corollary 4 Let n be a BLUM integer and ν , the period of a BBS sequence. Then $\nu \mid \lambda(\lambda(n))$ where λ is the CARMICHAEL function.

Proof. By Proposition 26 we have $\nu = \operatorname{ord}_s(2) \mid \lambda(s)$. Moreover $s = \operatorname{ord}_n(x) \mid \lambda(n)$, hence $\lambda(s) \mid \lambda(\lambda(n))$. We conclude that $\nu \mid \lambda(\lambda(n))$.