
6.5 Turing Machines

The mathematical results of complexity theory consist almost exclusively of
asymptotic cost estimates, and in almost all cases these estimates are upper
bounds. Complexity theory in its various flavours relies on diverse models
of computation. In this section we shortly sketch the common formalism by
Turing machines.

-input

2 ⌃⇤
M -output

2 ⌃⇤

Here ⌃ (as usual) denotes a finite alphabet. The input is a finite string
on a tape that is infinite in both directions. The Turing machine M can
assume states from a finite set that also contains a state “halt”. Depending
on the state the machine executes certain operations, for instance reads one
character from the tape, changes its state, writes one character to the tape,
moves the reading head by one position to the left or to the right. If M
reaches the state “halt”, then the current string on the tape is the output.

Let L ✓ ⌃⇤ be a language. If M reaches the “halt” state after a finite
number of steps for all inputs x 2 L, then we say that M accepts the
language L. If f : L �! ⌃⇤ is a function, and M reaches “halt” after
finitely many steps for each x 2 L with output f(x), then we say that M
computes f .

With some e↵ort, and not too overwhelming elegance, we can describe
all algorithms by Turing machines. Then by counting the steps we may
express their complexities in the form: for input x the machine M takes ⌧x
steps until reaching “halt”.

Usually we consider “worst case” complexity. Let Ln := L \ ⌃n. Then
the function

tM : N �! N, tM (n) := max{⌧x | x 2 Ln},

is called (time) complexity of the Turing machine M (for L).
The subset P (“polynomial time”) of the set of all functions from L to

⌃⇤ consists of the functions f : L �! ⌃⇤ for which there exists a Turing
machine M and an integer k 2 N such that

(i) M computes f ,

(ii) tM (n)  nk for almost all n 2 N.

Remark Equivalent with (ii) is the statemant: There is a polynomial
p 2 N[X] with tM (n)  p(n) for all n 2 N.
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For if there is such a polynomial p = arXr + · · ·+ a0 (with ar 6= 0), then

arn
r

� ar�1n
r�1 + · · ·+ a0 for n � n0,

p(n)  2arn
r for n � n0,

p(n)  nr+1 for n � n1 = max{2ar, n0}.

Conversely if tM (n)  nk for n � n0, then we choose c 2 N with tM (n)  c
for the finitely many n = 0, . . . , n0 � 1. Then tM (n)  p(n) for all n 2 N
with p = Xk + c.

Analogously we define the set EXPTIME (“exponential time”): f is in
EXPTIME if there exist a Turing machine M , an integer k 2 N, and real
numbers a, b 2 R with

(i) M computes f ,

(ii) tM (n)  a · 2bn
k
for almost all n 2 N.

Obviously P ✓ EXPTIME.

Examples with ⌃ = F2.

1. Assume

L := {(p, z) 2 N2
| p prime ⌘ 3 (mod 4), z 2 M2

p}

is coded as a subset of ⌃⇤ by a suitable binary representation. Let
f(p, z) = the square root of z mod p, likewise coded as an element of
⌃⇤. Then f 2 P by 5.3.

2. Let L = N2 be the set of integers � 2 (binary coded). Let f(x) = be
the smallest prime factor of x. Then f 2 EXPTIME since we can try
all the integers 

p
x  2n/2.

Presumably f 62 P.

3. The knapsack problem. Here

L = {(m, a1, . . . , am, N) |m, a1, . . . , am, N 2 N}

with suitable binary encoding,

f(m, a1, . . . , am, N) =

8
><

>:

1, if there is S ✓ {1, . . . ,m}

with
P

i2S ai = N,

0 otherwise.

Then f 2 EXPTIME since we can try all of the 2m subsets
S ✓ {1, . . . ,m}.

Presumably f 62 P.
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