6.3 Conversion Tricks

We give heuristic reasons that the following statements (A) to (D) are equivalent, and that each of them implies (E)—for a formal mathematical proof we don't have yet the exact definitions.

These implications also have practical relevance for constructing a basic function given another one. A coarse summary—for the discussion on regulations of cryptography that pop up from time to time—consists of the statements

- Who wants to prohibit encryption also must prohibit hash functions and pseudo-random generators.
- Who wants to make cryptography impossible must prove that $\mathbf{P} = \mathbf{NP}$.
- (A) There is a one-way function $f: \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^n$.
- (**Ã**) There is a one-way function $\tilde{f} : \mathbb{F}_2^{2n} \longrightarrow \mathbb{F}_2^n$.
- (B) There is a weak hash function $h: \mathbb{F}_2^* \longrightarrow \mathbb{F}_2^n$.
- (C) There is a strong symmetric cipher $F : \mathbb{F}_2^n \times \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^n$ (where "strong" means secure under a known-plaintext attack).
- (D) There is a perfect pseudo-random generator $\sigma \colon \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^{p(n)}$.
- (E) $P \neq NP$.
- **Remark 1** Making the statements precise in terms of complexity theory we have to state (A) (D) for families of functions that are parametrized by n.
- **Remark 2** A pseudo-random generator is perfect if for unknown $x \in \mathbb{F}_2^n$, given some bits of the output $\sigma(x)$, there is no efficient way to predict some more bits of the output, or to compute x. In the specification p is a polynomial with integer coefficients—from a "seed" of length n the generator produces p(n) bits.

We omit reasoning about the implication "(D) \implies (E)".

"(C) \implies (D)": Set $\sigma(x) = (s_1, \ldots, s_{p(n)/n})$ with $s_0 := x$ and $s_i := F(s_{i-1}, z)$ for $i \ge 1$, where the key z is a secret constant parameter. Note the similarity with the OFB mode for bitblock ciphers. For no block s_i of the sequence the attacker is able to determine the previous block s_{i-1} —otherwise the cipher wouldn't be secure. It is not obvious that this property suffices to show perfectness, we'll show this in Chapter IV.

"(D) \implies (C)": Consider the bitstream cipher that uses $\sigma(x)$ as bitstream and x as key.

"(A) \implies (C)": There is a simple approach by E. BACKUS: Set F(a,k) = a + f(k). Under a known-plaintext attack a and c = F(a,k) are known. Hence also f(k) = c - a is known. So the attack reduces to inverting f.

[Other approaches: MDC (= Message Digest Cryptography) by P. GUT-MANN, or the FEISTEL scheme.]

"(C) \implies (A)": See the example in Section 6.1.

"(A) \implies (Å)": Define \tilde{f} by $\tilde{f}(x, y) := f(x + y)$. Assume we can compute a pre-image (x, y) of c for \tilde{f} . Then this gives also the pre-image x + y of c for f.

"(\tilde{A}) \implies (B)": Pad $x \in \mathbb{F}_2^*$ with (at most n-1) zeroes, giving $(x_1, \ldots, x_r) \in (\mathbb{F}_2^n)^r$. Then set

$$c_0 := 0,$$

 $c_i := \tilde{f}(c_{i-1}, x_i) \text{ for } 1 \le i \le r,$
 $h(x) := c_r.$

This defines $h \colon \mathbb{F}_2^* \longrightarrow \mathbb{F}_2^n$.

Let $y \in \mathbb{F}_2^n$ be given. Assume the attacker finds a pre-image $x \in (\mathbb{F}_2^n)^r$ with h(x) = y. Then she also finds a $z \in (\mathbb{F}_2^n)^2$ with $\tilde{f}(z) = y$, namely $z = (c_{r-1}, x_r)$ (where $y = c_r$ in the construction of h).

"(B) \implies (A)": Restricting h to \mathbb{F}_2^n also gives a one-way function.