6.3 Conversion Tricks

We give heuristic reasons that the following statements (A) to (D) are equivalent, and that each of them implies (E)—for a formal mathematical proof we don't have yet the exact definitions.

These implications also have practical relevance for constructing a basic function given another one. A coarse summary-for the discussion on regulations of cryptography that pop up from time to time - consists of the statements

- Who wants to prohibit encryption also must prohibit hash functions and pseudo-random generators.
- Who wants to make cryptography impossible must prove that $\mathbf{P}=\mathbf{N P}$.
(A) There is a one-way function $f: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{n}$.
$(\tilde{\mathbf{A}})$ There is a one-way function $\tilde{f}: \mathbb{F}_{2}^{2 n} \longrightarrow \mathbb{F}_{2}^{n}$.
(B) There is a weak hash function $h: \mathbb{F}_{2}^{*} \longrightarrow \mathbb{F}_{2}^{n}$.
(C) There is a strong symmetric cipher $F: \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{n}$ (where "strong" means secure under a known-plaintext attack).
(D) There is a perfect pseudo-random generator $\sigma: \mathbb{F}_{2}^{n} \longrightarrow \mathbb{F}_{2}^{p(n)}$.
(E) $\mathbf{P} \neq \mathbf{N P}$.

Remark 1 Making the statements precise in terms of complexity theory we have to state (A) - (D) for families of functions that are parametrized by n.

Remark 2 A pseudo-random generator is perfect if for unknown $x \in \mathbb{F}_{2}^{n}$, given some bits of the output $\sigma(x)$, there is no efficient way to predict some more bits of the output, or to compute x. In the specification p is a polynomial with integer coefficients-from a "seed" of length n the generator produces $p(n)$ bits.

We omit reasoning about the implication "(D) $\Longrightarrow(\mathrm{E})$ ".
$"(\mathrm{C}) \Longrightarrow(\mathrm{D}) "$: Set $\sigma(x)=\left(s_{1}, \ldots, s_{p(n) / n}\right)$ with $s_{0}:=x$ and $s_{i}:=$ $F\left(s_{i-1}, z\right)$ for $i \geq 1$, where the key z is a secret constant parameter. Note the similarity with the OFB mode for bitblock ciphers. For no block s_{i} of the sequence the attacker is able to determine the previous block $s_{i-1}-$ otherwise the cipher wouldn't be secure. It is not obvious that this property suffices to show perfectness, we'll show this in Chapter IV.
" $(\mathrm{D}) \Longrightarrow(\mathrm{C})$ ": Consider the bitstream cipher that uses $\sigma(x)$ as bitstream and x as key.
" A$) \Longrightarrow(\mathrm{C}) "$: There is a simple approach by E. BACKUS: Set $F(a, k)=a+f(k)$. Under a known-plaintext attack a and $c=F(a, k)$ are known. Hence also $f(k)=c-a$ is known. So the attack reduces to inverting f.
[Other approaches: MDC (= Message Digest Cryptography) by P. Gutmann, or the Feistel scheme.]
" $(\mathrm{C}) \Longrightarrow(\mathrm{A})$ ": See the example in Section 6.1.
$"(\mathrm{~A}) \Longrightarrow(\tilde{\mathrm{A}})$ ": Define \tilde{f} by $\tilde{f}(x, y):=f(x+y)$. Assume we can compute a pre-image (x, y) of c for \tilde{f}. Then this gives also the pre-image $x+y$ of c for f.
$"(\tilde{\mathrm{~A}}) \Longrightarrow(\mathrm{B}) ":$ Pad $x \in \mathbb{F}_{2}^{*}$ with (at most $n-1$) zeroes, giving $\left(x_{1}, \ldots, x_{r}\right) \in\left(\mathbb{F}_{2}^{n}\right)^{r}$. Then set

$$
\begin{aligned}
c_{0} & :=0, \\
c_{i} & :=\tilde{f}\left(c_{i-1}, x_{i}\right) \quad \text { for } 1 \leq i \leq r, \\
h(x) & :=c_{r} .
\end{aligned}
$$

This defines $h: \mathbb{F}_{2}^{*} \longrightarrow \mathbb{F}_{2}^{n}$.
Let $y \in \mathbb{F}_{2}^{n}$ be given. Assume the attacker finds a pre-image $x \in\left(\mathbb{F}_{2}^{n}\right)^{r}$ with $h(x)=y$. Then she also finds a $z \in\left(\mathbb{F}_{2}^{n}\right)^{2}$ with $\tilde{f}(z)=y$, namely $z=\left(c_{r-1}, x_{r}\right)$ (where $y=c_{r}$ in the construction of $\left.h\right)$.
$"(\mathrm{~B}) \Longrightarrow(\mathrm{A}) "$: Restricting h to \mathbb{F}_{2}^{n} also gives a one-way function.

