5.3 Square Roots in Finite Prime Fields

In many cases taking square roots is a trivial task as the following simple consideration shows:

Lemma 9 Let G be a finite group of odd order m. Then for each $a \in G$ there is exactly one $x \in G$ with $x^{2}=a$, and it is given by $x=a^{\frac{m+1}{2}}$.

Proof. Since $a^{m}=1$ we have $x^{2}=a^{m+1}=a$. We conclude that the squaring map $x \mapsto x^{2}$ is surjective, hence a bijection $G \longrightarrow G$.

We search methods for taking square roots in a finite prime field \mathbb{F}_{p} as efficiently as possible. The case $p \equiv 3(\bmod 4)$ is extremely simple by the foregoing consideration: If $p=4 k+3$, then the group \mathbb{M}_{p}^{2} of quadratic residues has odd order $\frac{p-1}{2}=2 k+1$. Hence for a quadratic residue $z \in \mathbb{M}_{p}^{2}$ the unique square root is $x=z^{k+1} \bmod p$ [LAGRANGE 1769]. The cost of taking this square root is at most $2 \cdot \log _{2}(p)$ congruence multiplications.

Examples

1. For $p=7=4 \cdot 1+3$ we have $k+1=2$. By A. 82 is a quadratic residue. A square root is $2^{2}=4$. Check: $4^{2}=16 \equiv 2$.
2. For $p=23=4 \cdot 5+3$ we have $k+1=6$. By A. 8 again 2 is a quadratic residue. A square root is $2^{6}=64 \equiv 18$. Check: $18^{2} \equiv(-5)^{2}=25 \equiv 2$.

Unfortunately for $p \equiv 1(\bmod 4)$ we cannot hope for such a simple procedure. For example -1 is a quadratic residue, but no power of -1 can be a square root of -1 since always $\left[(-1)^{m}\right]^{2}=(-1)^{2 m}=1 \neq-1$.

Fortunately there are general procedures, for example one that is baptized AMM after Adleman, Manders, and Miller, but was described already by Cipolla in 1903 . It starts by decomposing $p-1$ into $p-1=2^{e} \cdot u$ with odd u. Furthermore we choose (once and for all) an arbitrary quadratic nonresidue $b \in \mathbb{F}_{p}^{\times}-\mathbb{M}_{p}^{2}$ - this is the only nondeterministic step in the algorithm, see Section A.8. (Assuming ERH the procedure is even deterministic, as it is in the many cases where a quadratic nonresidue is known anyway.)

Now we consider a quadratic residue $z \in \mathbb{M}_{p}^{2}$ and want to find a square root of it. Since $z \in \mathbb{M}_{p}^{2}$, we have $\operatorname{ord}(z) \left\lvert\, \frac{p-1}{2}\right.$, hence the 2 -order $r=\nu_{2}(\operatorname{ord}(z))$ of $\operatorname{ord}(z)$ is bounded by $\leq e-1$, and r is minimal with $z^{u 2^{r}} \equiv 1$.

We recursively define a sequence z_{1}, z_{2}, \ldots beginning with

$$
z_{1}=z \quad \text { with } r_{1}=\nu_{2}\left(\operatorname{ord}\left(z_{1}\right)\right) .
$$

If $z_{i} \in \mathbb{M}_{p}^{2}$ is chosen, and r_{i} is the 2 -order of $\operatorname{ord}\left(z_{i}\right)$, then the sequence terminates if $r_{i}=0$. Otherwise we set

$$
z_{i+1}=z_{i} \cdot b^{2^{e-r_{i}}}
$$

Then $z_{i+1} \in \mathbb{M}_{p}^{2}$. Furthermore

$$
z_{i+1}^{u \cdot 2^{r_{i}-1}} \equiv z_{i}^{u \cdot 2^{r_{i}-1}} \cdot b^{u \cdot 2^{e-1}} \equiv 1
$$

since the first factor is $\equiv-1$ due to the minimality of r_{i}, and the second factor is $\equiv\left(\frac{b}{p}\right)=-1$, for $u \cdot 2^{e-1}=\frac{p-1}{2}$. Hence $r_{i+1}<r_{i}$. The terminating condition $r_{n}=0$ is reached after at most e steps with $n \leq e \leq \log _{2}(p)$.

Then we compute reversely:

$$
x_{n}=z_{n}^{\frac{u+1}{2}} \bmod p
$$

with $x_{n}^{2} \equiv z_{n}^{u+1} \equiv z_{n}\left(\right.$ since $\operatorname{ord}\left(z_{n}\right) \mid u$ by its odd parity). Recursively

$$
x_{i}=x_{i+1} / b^{2^{e-r_{i}-1}} \bmod p
$$

that by induction satisfies

$$
x_{i}^{2} \equiv x_{i+1}^{2} / b^{2^{e-r_{i}}} \equiv z_{i+1} / b^{2^{e-r_{i}}} \equiv z_{i}
$$

Hence $x=x_{1}$ is a square root of z.
In addition to the cost of finding b we count the following steps:

- Computing the powers $b^{2}, \ldots, b^{2^{e-1}}$, costing $(e-1)$ modular squares.
- Computing the powers $b^{u}, b^{2 u}, \ldots, b^{2^{e-1} u}$, taking at most $2 \cdot \log _{2}(u)+e-1$ congruence multiplications.
- Computing z^{u}, taking at most $2 \cdot \log _{2}(u)$ congruence multiplications.
- Furthermore we compute for each $i=1, \ldots, n \leq e$:
$-z_{i}$ by one congruence multiplication,
$-z_{i}^{u}$ from z_{i-1}^{u} by one congruence multiplication,
$-z_{i}^{u 2^{r}}$ from $z_{i-1}^{u 2^{r}}$ by one congruence multiplication,
- and then r_{i}.

This makes a total of at most $3 \cdot(e-1)$ congruence multiplications.

- x_{n} as a power by at most $2 \cdot \log _{2}(u)$ congruence multiplications.
- x_{i} from x_{i+1} each by one congruence division with cost $\mathrm{O}\left(\log (p)^{2}\right)$.

Summing up we get costs of size about $\mathrm{O}\left(\log (p)^{3}\right)$ with a rather small constant coefficient.

Example Let $p=29$ and $z=5$. Then $p-1=4 \cdot 7$, hence $e=2$ and $u=7$. By the remarks above $b=2$ is a quadratic nonresidue. We compute the powers

$$
\begin{gathered}
b^{2}=4, \quad b^{u} \equiv 128 \equiv 12, \quad b^{2 u} \equiv 144 \equiv-1 \\
z^{2} \equiv 25 \equiv-4, \quad z^{4} \equiv 16, \quad z^{6} \equiv-64 \equiv-6, \quad z^{7} \equiv-30 \equiv-1
\end{gathered}
$$

Now

$$
\begin{gathered}
z_{1}=5, \quad z_{1}^{u} \equiv-1, \quad z_{1}^{2 u} \equiv 1, \quad r_{1}=1 \\
z_{2} \equiv z_{1} b^{2} \equiv 5 \cdot 4=20, \quad z_{2}^{u} \equiv z_{1}^{u} b^{2 u} \equiv(-1)(-1)=1, \quad r_{2}=0
\end{gathered}
$$

Now we go backwards:

$$
\begin{gathered}
x_{2} \equiv z_{2}^{\frac{u+1}{2}}=z_{2}^{4}=\left(z_{2}^{2}\right)^{2} \equiv 400^{2} \equiv(-6)^{2}=36 \equiv 7 \\
x_{1}=x_{2} / b \bmod p=7 / 2 \bmod 29=18
\end{gathered}
$$

Hence $x=18$ is the wanted root. Check: $18^{2}=324 \equiv 34 \equiv 5$.
Exercises Find deterministic algorithms ($=$ simple formulas) for taking square roots in the fields

- \mathbb{F}_{p} with $p \equiv 5(\bmod 8)$
- $\mathbb{F}_{2^{m}}$ with $m \geq 2$ [Hints: 1 . Consider the order of the radicand in the multiplicative group. 2. Invert the linear map $x \mapsto x^{2}$.]
- \mathbb{F}_{q} for $q=p^{m}$

Alternative algorithms: Almost all known efficient algorithms that completely cover the case $p \equiv 1(\bmod 4)$ are probabilistic and have a deterministic variant whose cost is polynomial assuming ERH. The book by Forster (Algorithmische Zahlentheorie) has a variant of the Cipolla/AMM algorithm that uses the quadratic extension $\mathbb{F}_{p^{2}} \supseteq \mathbb{F}_{p}$ and is conceptionally quite simple. The Handbook of Applied Cryptography (Menezes/van Oorschot/Vanstone) contains an algorithm by Tonelli 1891 that admits a concise formulation, but cost $\mathrm{O}\left(\log (p)^{4}\right)$. Another method is a special case of the CANTOR/ZASSENHAUS algorithm for factoring polynomials over finite fields, see von zur Gathen/Gerhard: Modern Computer Algebra. Yet another procedure by LEHMER uses the LUCAS sequence $\left(a_{n}\right)$ with $a_{1}=b, a_{2}=b^{2}-2 z$, where $b^{2}-4 z$ is a quadratic nonresidue. The only known deterministic algorithm with proven polynomial cost was given by Schoof. It uses elliptic curves, and costs $\mathrm{O}\left(\log (p)^{9}\right)$, so it is of theoretical interest only.

For overviews see:

- E. Bach/ J. Shallit: Algorithmic Number Theory. MIT Press, Cambridge Mass. 1996.
- D. J. Bernstein: Faster square roots in annoying finite fields. Preprint (siehe die Homepage des Autors http://cr.yp.to/).

