
5.5 Square Roots for Composite Modules

If we know the prime decomposition of the module n, then we can e�ciently
compute square roots in Mn. The two tasks “factoring” and “computing
square roots” are equivalent with respect to their complexity.

For an execution of the procedure we successively decompose n into
coprime factors (down to the prime powers).

So let n = rs with coprime factors r and s. First we compute coe�cients
a and b such that ar + bs = 1 using the extended Euclidean algorithm.

We want to find a square root of z. Let u be a square root mod r and v be
a square root mod s. Then x := arv + bsu mod n satisfies the congruences:

x ⌘ bsu ⌘ u (mod r), x ⌘ arv ⌘ v (mod s),

x2 ⌘ u2 ⌘ z (mod r), x2 ⌘ v2 ⌘ z (mod s),

hence x2 ⌘ z (mod n).
The cost for this procedure is two square roots modulo the factors, one

Euclidean algorithm, and four congruence multiplications (+ 1 congruence
addition). Hence it is O(log(n)3).

For Blum integers (see Appendix A.11) we even have a simpler algo-
rithm, namely an explicit formula:

Corollary 1 Let n = pq with primes p, q ⌘ 3 (mod 4). Then

(i) d = (p�1)(q�1)+4
8 is an integer.

(ii) For each quadratic residue x 2 M2
n the power xd is the (unique) square

root of x in M2
n.

Proof. (i) If p = 4k+ 3, q = 4l+ 3, then (p� 1)(q� 1) = 16kl+ 8k+ 8l+ 4,
hence d = 2kl + k + l + 1.

(ii) The exponent of the multiplicative group Mn,

�(n) = kgV(p� 1, q � 1) = 2 · kgV(2k + 1, 2l + 1)

is a divisor of 2 · (2k + 1) · (2l + 1), The exponent of the subgroup M2
n of

squares is �(n)
2 , hence a divisor of (2k+1)·(2l+1) = 4kl+2k+2l+1 = 2d�1.

Thus x2d ⌘ x (mod n) for all x 2 M2
n, thus the square of xd is x. 3

This simple formula has the e↵ect that the Rabin cipher is especially
easy to handle for Blum integer modules.
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