4.1 The Discrete Logarithm

Let G be a group (multiplicatively written) and $a \in G$ be an element of order s (maybe ∞). Then the exponential function to base a in G

$$
\exp _{a}: \mathbb{Z} \longrightarrow G, \quad x \mapsto a^{x}
$$

is a group homomorphism (since $a^{x+y}=a^{x} a^{y}$) and has period s (since $a^{x+s}=a^{x} a^{s}=a^{x}$ if $\left.s<\infty\right)$. By the homomorphy theorem the induced homomorphism h

is an isomorphism, hence has an inverse map

$$
\log _{a}:\langle a\rangle \longrightarrow \mathbb{Z} / s \mathbb{Z}
$$

defined on the cyclic subgroup $\langle a\rangle \subseteq G$, the discrete logarithm to base a that is an isomorphism of groups. [The case $s=\infty$ fits into this scenario for $s \mathbb{Z}=0$ and $\mathbb{Z} / s \mathbb{Z}=\mathbb{Z}$.]

We apply this to the multiplicative group \mathbb{M}_{n} : For an integer $a \in \mathbb{Z}$ with $\operatorname{gcd}(a, n)=1$ the exponential function $\bmod n$ to base a,

$$
\exp _{a}: \mathbb{Z} \longrightarrow \mathbb{M}_{n}, \quad x \mapsto a^{x} \bmod n
$$

has period $s=\operatorname{ord} a|\lambda(n)| \varphi(n)$. The inverse function

$$
\log _{a}:\langle a\rangle \longrightarrow \mathbb{Z} / s \mathbb{Z}
$$

is the discrete logarithm $\bmod n$ to base a.
We know of no efficient algorithm that computes the discrete logarithm $\log _{a}$ for large $s=$ ord a, or to invert the exponential function-not even a probabilistic one.

Informal definition: A function $f: M \longrightarrow N$ is called oneway function if for "almost all" images $y \in N$ there is no efficient way to compute a pre-image $x \in M$ with $f(x)=y$.
This definition can be given a mathematically precise (although not completely satisfying) formulation in terms of complexity theory, see Appendix B

Discrete logarithm assumption: The $\operatorname{exponential}$ function $\exp _{a} \bmod n$ is a one-way function for "almost all" bases a.

Note that this is an unproven conjecture.
The most important special case is a prime module $p \geq 3$, and a primitive element $a \in[2, \ldots, p-2]$, i. e., ord $a=p-1$.

To make the computation of discrete logarithms hard in practice we have to choose a prime module p of about the same size as an RSA module. Thus according to the state of the art 1024-bit primes are completely obsolete, 2048-bit primes are safe for short-time applications only.

The book by Shparlinski (see the references for these lecture notes) contains some lower bounds for the complexity of discrete logarithm computations in various computational models.

