
4.6 Computing Discrete Logarithms

The classical algorithm for computing discrete logarithms is the index cal-
culus by Adleman—“index” was Gauss’ denotation of the discrete loga-
rithm.

Let p � 3 be a prime and a be a primitive element for p.
The naive algorithm for computing loga y for y 2 F⇥

p is punished by
exponentially growing costs, as usual. It computes a, a2, a3, . . . in order until
x with ax = y is found. In the mean it needs p

2 � 1 trials, in the worst case,
p� 2 (omitting the trivial value y = 1).

Preliminary Steps

For given p and a we need to execute this precomputation only once.
Let p1 = 2, p2 = 3, . . . , pk be the first k primes.
If we randomly choose an exponent r, then it could happen that ar mod

p—considered as integer 2 Z—has only prime divisors in {p1, . . . , pk}. After
h strokes of luck we have a system of h equations:

ar1 mod p = p↵11
1 · · · p↵1k

k ,

...

arh mod p = p↵h1
1 · · · p↵hk

k .

in Z and a forteriori in Fp. Taking logarithms results in a system of linear
equations over the ring Z/(p� 1)Z for the k unknowns loga pi:

r1 = ↵11 · loga p1 + · · ·+ ↵1k · loga pk,
...

rh = ↵h1 · loga p1 + · · ·+ ↵hk · loga pk.

From Chapter I we know e�cient algorithms for solving it. If h is su�ciently
large—at least h � k—, then we can compute loga p1, . . . , loga pk.

The random search for “strokes of luck” makes the precomputation prob-
abilistic.

Computation

Let y 2 F⇥
p be given. We want to compute loga y.

For a randomly chosen exponent s it could happen that

y · as mod p = p�1
1 · · · p�k

k

in Z. Then we easily compute

loga y = �1 · loga p1 + · · ·+ �k · loga pk � s .

65



This observation reduces the computation of the discrete logarithm of any

element to the computation for the elements of the factor basis (p1, . . . , pk).
This reduction is also probabilistic.

Variants

The presented approach has several variants that result in di↵erent running
times. They vary in the choice of the factor basis—that might be adapted to
y and need not consist of the first primes without gap—and in the strategy
of choosing the exponents r and s.

The fastest known variant uses a number field sieve such as applied for
factoring large integers and has expenses of

⇡ ec·
3
p

log p·(log log p)2 ,

the same order of magnitude as is needed for factoring an integer of the
same size. By the state of the art 1024-bit primes are insecure, and 2048-bit
primes secure only for short-term cryptographic applications.

As an oddity we mention that the “Secure NFS” protocol deployed by
SUN used a 192-bit prime (58 decimal places) even in the 1990s.

Special Primes

There are reasons to choose p as a special prime of the form p = 2p0+1 with
p0 prime:

1. Some algorithms are very fast if p � 1 has only small prime divisors.
This argument is no longer considered as solid since the advantage of
special algorithms over the current versions of the number field sieve
is only small. Moreover the probability of choosing such a “bad” prime
by accident is extremely small.

2. Finding a primitive element is easy, see Section A.9 in the appendix.

66


