3.2 Strong Pseudoprimes

For a stronger pseudoprime test we use an additional characteristic property of primes.

Assume that n is odd, but not a prime nor a prime power. Then the residue class ring $\mathbb{Z} / n \mathbb{Z}$ contains non-trivial square roots of 1 besides ± 1. If we find one of these, then we have a proof that n is composite. But how to find non-trivial square roots of 1 when the prime decomposition of n is unknown?

Picking up an idea from Section 2.2 we decompose $n-1$ as

$$
\begin{equation*}
n-1=2^{s} \cdot r \quad \text { with odd } r \tag{1}
\end{equation*}
$$

(and call s the 2-order of $n-1$). Let $a \in \mathbb{M}_{n}$. If n fails the pseudoprime test to base a, then it is identified as composite. Otherwise the order of a in the multiplicative group \mathbb{M}_{n} divides $n-1$. Consider the sequence

$$
\begin{equation*}
a^{r} \bmod n, \quad a^{2 r} \bmod n, \quad \ldots, \quad a^{2^{s} r} \bmod n=1 . \tag{2}
\end{equation*}
$$

Possibly already $a^{r} \equiv 1(\bmod n)$, and thus the complete sequence consists of 1's. Then we reject a without deciding on n. Otherwise the first 1 occurs at a later position. Then the element before it must be a square root of 1 , but $\neq 1$. If we have bad luck, it is -1 . In this case again we reject a without a decision. But if we are lucky we have found a non-trivial square root of 1 , and identified n as a composite number.

Now let n be an arbitrary positive integer, and assume that $n-1$ is decomposed as in Equation (11). Then (after SELfridge ca 1975) we call n a strong pseudoprime to base a, if
(3) $a^{r} \equiv 1 \quad(\bmod n) \quad$ or $\quad a^{2^{k} r} \equiv-1 \quad(\bmod n) \quad$ for a $k=0, \ldots, s-1$.

Lemma 4 (i) A prime number is a strong pseudoprime to each base that is not a multiple of this prime.
(ii) A pseudoprime to base a is a forteriori a pseudoprime to base a.

Proof. (i) If n is prime and $a^{r} \equiv 1$, then in the sequence (2) we choose k maximal with $0 \leq k<s$ and $a^{2^{k} r} \not \equiv 1(\bmod n)$. Since ± 1 are the only square roots of $1 \bmod n$ we conclude $a^{2^{k} r} \equiv-1(\bmod n)$.
(ii) The definition (3) immediately yields $a^{n-1} \equiv 1(\bmod n)$.

Now we face an analoguous situation as in Section 2.3 with $u=n-1$. The set

$$
B_{u}=\bigcup_{t=0}^{s}\left\{w \in \mathbb{M}_{n} \mid w^{r \cdot 2^{t}}=1, w^{r \cdot 2^{t-1}}=-1(\text { if } t>0)\right\}
$$

exactly consists of the bases to which n is a strong pseudoprime, thus has the property $\left(\mathrm{E}_{n, u}\right)$. These bases are called prime testimonials for n.

The Carmichael number $n=561$ fails the test even with $a=2$: We have $n-1=560=16 \cdot 35$,

$$
\begin{array}{lll}
2^{35} \equiv 263 & (\bmod 561), & 2^{70} \equiv 166 \quad(\bmod 561) \\
2^{140} \equiv 67 & (\bmod 561), & 2^{280} \equiv 1 \quad(\bmod 561)
\end{array}
$$

Hence 561 is unmasked as a composite number since $67 \equiv \pm 1$. The smallest composite integer that is a strong pseudoprime to 2,3 , and 5 , is $25326001=2251 \cdot 11251$. The only composite number $<10^{11}$ that is a strong pseudoprime to the bases $2,3,5$, and 7, is 3215031751 . This observations make us hope that the strong pseudoprime test is suited for detecting primes.

Proposition 10 Let $n \geq 3$ be odd. Then the following statements are equivalent:
(i) n is prime.
(ii) n is a strong pseudoprime to each base a that is not a multiple of n.

Proof."(i) \Longrightarrow (ii)": See Lemma 4 (i).
"(ii) $\Longrightarrow(i) ":$ By Lemma 4 (ii) n is a prime or satisfies the definition of a CARmichaEl number, in particular $\lambda(n) \mid n-1=u$, and n is squarefree, and a forteriori not a proper prime power. Since $B_{u}=\mathbb{M}_{n}$ by assumption, Lemma 1 says that n is a prime power. Hence n is prime. \diamond

Corollary 2 If n is not prime, then the number of bases $<n$ to which n is a strong pseudoprime is at most $\frac{\varphi(n)}{2}$.

Proof. If n is a CARMIChaEl number, then this follows from Proposition 4. Otherwise $A_{u}=\left\{w \in \mathbb{M}_{n} \mid w^{n-1}=1\right\}<\mathbb{M}_{n}$ is a proper subgroup, and $B_{u} \subseteq A_{u}$.

With a little more care we even get the RABin/MoniER bound $\frac{\varphi(n)}{4}$ (Exercise).

