
3.2 Strong Pseudoprimes

For a stronger pseudoprime test we use an additional characteristic property
of primes.

Assume that n is odd, but not a prime nor a prime power. Then the
residue class ring Z/nZ contains non-trivial square roots of 1 besides ±1.
If we find one of these, then we have a proof that n is composite. But how
to find non-trivial square roots of 1 when the prime decomposition of n is
unknown?

Picking up an idea from Section 2.2 we decompose n� 1 as

(1) n� 1 = 2s · r with odd r

(and call s the 2-order of n � 1). Let a 2 Mn. If n fails the pseudoprime
test to base a, then it is identified as composite. Otherwise the order of a in
the multiplicative group Mn divides n� 1. Consider the sequence

(2) ar mod n, a2r mod n, . . . , a2
sr mod n = 1 .

Possibly already ar ⌘ 1 (mod n), and thus the complete sequence consists
of 1’s. Then we reject a without deciding on n. Otherwise the first 1 occurs
at a later position. Then the element before it must be a square root of 1,
but 6= 1. If we have bad luck, it is �1. In this case again we reject a without
a decision. But if we are lucky we have found a non-trivial square root of 1,
and identified n as a composite number.

Now let n be an arbitrary positive integer, and assume that n � 1 is
decomposed as in Equation (1). Then (after Selfridge ca 1975) we call n
a strong pseudoprime to base a, if

(3) ar ⌘ 1 (mod n) or a2
kr

⌘ �1 (mod n) for a k = 0, . . . , s� 1.

Lemma 4 (i) A prime number is a strong pseudoprime to each base that

is not a multiple of this prime.

(ii) A pseudoprime to base a is a forteriori a pseudoprime to base a.

Proof. (i) If n is prime and ar/⌘ 1, then in the sequence (2) we choose k

maximal with 0  k < s and a2
kr/⌘ 1 (mod n). Since ±1 are the only square

roots of 1 mod n we conclude a2
kr

⌘ �1 (mod n).
(ii) The definition (3) immediately yields an�1

⌘ 1 (mod n). 3

Now we face an analoguous situation as in Section 2.3 with u = n � 1.
The set

Bu =
s[

t=0

{w 2 Mn | wr·2t = 1, wr·2t�1
= �1 (if t > 0)}
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exactly consists of the bases to which n is a strong pseudoprime, thus has
the property (En,u). These bases are called prime testimonials for n.

The Carmichael number n = 561 fails the test even with a = 2: We
have n� 1 = 560 = 16 · 35,

235 ⌘ 263 (mod 561), 270 ⌘ 166 (mod 561),

2140 ⌘ 67 (mod 561), 2280 ⌘ 1 (mod 561).

Hence 561 is unmasked as a composite number since 67/⌘ ±1. The small-
est composite integer that is a strong pseudoprime to 2, 3, and 5, is
25326001 = 2251 · 11251. The only composite number < 1011 that is a strong
pseudoprime to the bases 2, 3, 5, and 7, is 3 215 031 751. This observations
make us hope that the strong pseudoprime test is suited for detecting primes.

Proposition 10 Let n � 3 be odd. Then the following statements are equiv-

alent:

(i) n is prime.

(ii) n is a strong pseudoprime to each base a that is not a multiple of n.

Proof. “(i) =) (ii)”: See Lemma 4 (i).
“(ii) =) (i)”: By Lemma 4 (ii) n is a prime or satisfies the definition of

a Carmichael number, in particular �(n) | n� 1 = u, and n is squarefree,
and a forteriori not a proper prime power. Since Bu = Mn by assumption,
Lemma 1 says that n is a prime power. Hence n is prime. 3

Corollary 2 If n is not prime, then the number of bases < n to which n is

a strong pseudoprime is at most
'(n)
2 .

Proof. If n is a Carmichael number, then this follows from Proposition 4.
Otherwise Au = {w 2 Mn | wn�1 = 1} < Mn is a proper subgroup, and
Bu ✓ Au. 3

With a little more care we even get the Rabin/Monier bound '(n)
4

(Exercise).
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