3.1 The Pseudoprime Test

How can we identify an integer as prime? The "naive" approach is trial divisions by all integers $\leq \sqrt{n}$, made perfect in the form of ERATOSTHENES sieve. An assessment of the cost shows that this approach is not efficient since $\sqrt{n} = \exp(\frac{1}{2}\log n)$ grows exponentially with the length $\log n$ of n.

An approach to identify primes without trial divisions is suggested by FERMAT's theorem: If n is prime, then $a^{n-1} \equiv 1 \pmod{n}$ for all $a = 1, \ldots, n-1$. Note that this is a necessary condition only, not a sufficient one. Thus we say that n is a (FERMAT) **pseudoprime to base** aif $a^{n-1} \equiv 1 \pmod{n}$. Hence a prime number is a pseudoprime to each base $a = 1, \ldots, n-1$.

Examples

- 1. The congruence $2^{14} \equiv 4 \pmod{15}$ shows that 15 is not prime.
- 2. We have $2^{340} \equiv 1 \pmod{341}$ although $341 = 11 \cdot 31$ is not prime. Anyway $3^{340} \equiv 56 \pmod{341}$, hence 341 fails the pseudoprime test to base 3.

The pseudoprime property is not sufficient for primality. Therefore we call n a CARMICHAEL **number** if n is a pseudoprime to each base a that is coprime with n, but n is not a prime.

Another way to express pseudoprimality is that the order of a in \mathbb{M}_n divides n-1. Thus n is a CARMICHAEL number or prime if and only if $\lambda(n) | n-1$ with the CARMICHAEL function λ .

Unfortunately there are many CARMICHAEL numbers, so pseudoprimality cannot even considered as "almost sufficient" for primality. In 1992 AL-FORD, GRANVILLE, and POMERANCE proved that there are infinitely many CARMICHAEL numbers.

The smallest CARMICHAEL number is $561 = 3 \cdot 11 \cdot 17$. This is a direct consequence of the next proposition.

Proposition 9 A natural number n is a CARMICHAEL number if and only if it is not prime, squarefree, and p-1 | n-1 for each prime divisor p of n. An odd CARMICHAEL number has at least 3 prime factors.

Proof. " \Longrightarrow ": Let p be a prime divisor of n.

Assume $p^2|n$. Then \mathbb{M}_n contains a subgroup isomorphic with \mathbb{M}_{p^e} for some $e \geq 2$, hence by Proposition 18 in Appendix A.3 also a cyclic subgroup of order p. This leads to the contradiction p|n-1.

Since \mathbb{M}_n contains a cyclic group of order p-1 it has an element a of order p-1, and $a^{n-1} \equiv 1 \pmod{n}$, hence $p-1 \mid n-1$.

" \Leftarrow ": Since *n* is squarefree by the chinese remainder theorem the multiplicative group \mathbb{M}_n is the direct product of the cyclic groups \mathbb{F}_p^{\times} where *p* runs through the prime divisors of *n*. Since all $p-1 \mid n-1$ the order of each element of \mathbb{M}_n divides n-1.

Proof of the addendum: Let n be an odd CARMICHAEL number. Suppose n = pq with two primes p and q, say p < q. Then $q - 1 \mid n - 1 = pq - 1$, hence $p - 1 \equiv pq - 1 \equiv 0 \pmod{q - 1}$. This contradicts p < q.