3.4 The Extended Riemann Hypothesis (ERH)

A (complex) character $\bmod n$ is a function

$$
\chi: \mathbb{Z} \longrightarrow \mathbb{C}
$$

with the properties:

1. χ has period n.
2. $\chi(x y)=\chi(x) \chi(y)$ for all $x, y \in \mathbb{Z}$.
3. $\chi(x)=0$ if and only if $\operatorname{ggT}(x, n)>1$.

The characters mod n bijectively correspond to the group homomorphisms

$$
\bar{\chi}: \mathbb{M}_{n} \longrightarrow \mathbb{C}^{\times}
$$

in a canonical way.
Examples are the trivial character $\chi(a)=1$ for all a that are coprime with n, and the JACOBI character $\chi(a)=\left(\frac{a}{n}\right)$ known from the theory of quadratic reciprocity, see Appendix A. 5

A character defines an L-function by the Dirichlet series

$$
L_{\chi}(z)=\sum_{a=1}^{\infty} \frac{\chi(a)}{a^{z}}
$$

This series converges absolutely and locally uniformly in the half-plane $\{z \in \mathbb{C} \mid \operatorname{Re}(z)>1\}$ because $a^{i \cdot \operatorname{Im}(z)}=e^{i \cdot \ln (a) \cdot \operatorname{Im}(z)}$ has absolute value 1 , hence

It admits an analytic continuation to the right half-plane $\operatorname{Re}(z)>0$ as a holomorphic function, except for the trivial character where 1 is a simple pole.

The function L_{χ} has the Riemann property if all its zeroes in the strip $0<\operatorname{Re}(z) \leq 1$ are on the line $\operatorname{Re}(z)=\frac{1}{2}$. The RiEmann hypothesis states just this property for the Riemann zeta function, the extended Riemann hypothesis (ERH), for all L-functions for characters $\bmod n$.

The zeta function is defined for $\operatorname{Re}(z)>1$ by

$$
\zeta(z):=\sum_{a=1}^{\infty} \frac{1}{a^{z}}=\prod_{p \text { prime }} \frac{1}{1-\frac{1}{p^{z}}}
$$

where the last equation is EuLER's product formula. Hence for the trivial character $\chi_{1} \bmod n$ we have:

$$
L_{\chi_{1}}(z)=\sum_{\operatorname{gcd}(a, n)=1} \frac{1}{a^{z}}=\zeta(z) \cdot \prod_{p \mid n \text { prime }}\left(1-\frac{1}{p^{z}}\right)
$$

and this L-function has the same zeroes as ζ in $\operatorname{Re}(z)>0$.

Proposition 11 (Ankeney/Montgomery/Bach) Let $c=2 / \ln (3)^{2}=$ 1.65707.... Let χ be a nontrivial character $\bmod n$ whose L-function L_{χ} has the Riemann property. Then there is a prime $p<c \cdot \ln (n)^{2}$ with $\chi(p) \neq 1$.

We omit the proof.
Corollary 1 Suppose ERH is true. Let $G<\mathbb{M}_{n}$ be a proper subgroup. Then there is a prime p with $p<c \cdot \ln (n)^{2}$ whose residue class $\bmod n$ is in the complement $\mathbb{M}_{n}-G$.

Proof. There exists a nontrivial homomorphism $\mathbb{M}_{n} / G \longrightarrow \mathbb{C}^{\times}$, thus a character $\bmod n$ with $G \subseteq \operatorname{ker} \chi \subseteq \mathbb{M}_{n} . \diamond$

Proposition 12 (Miller) Let the integer $n \geq 3$ be odd and a strong pseudoprime to all prime bases $a<c \cdot \ln (n)^{2}$ with c as in Proposition 11. Assume that the L-function of each character for each divisor of n has the RIEmann property. Then n is prime.

Proof. We first show that n is squarefree.
Assume $p^{2} \mid n$ for some prime p. The multiplicative group $\mathbb{M}_{p^{2}}$ is cyclic of order $p(p-1)$. In particular the homomorphism

$$
\mathbb{M}_{p^{2}} \longrightarrow \mathbb{M}_{p^{2}}, \quad a \mapsto a^{p-1} \bmod p^{2}
$$

is nontrivial. Its image is a subgroup $G<\mathbb{M}_{p^{2}}$ of order p, and is cyclic, hence isomorphic with the group of p-th roots of unity in \mathbb{C}. The composition of these two homomorphisms yields a character $\bmod p^{2}$. Thus Proposition 11 gives a prime $a<c \cdot \ln \left(p^{2}\right)^{2}$ with $a^{p-1} \equiv 1 \bmod p^{2}$. The order of a in $\mathbb{M}_{p^{2}}$ divides $p(p-1)$. Suppose $a^{n-1} \equiv 1 \bmod n$. Then the order also divides $n-1$. Since p is coprime with $n-1$ the order divides $p-1$, contradicting the definition of a. Hence $a^{n-1} \equiv 1 \bmod n$, and this in turn contradicts the strong pseudoprimality of n. Therefore n is squarefree.

Next we show that n doesn't have two different prime factors.
Assume p and q are two different prime divisors of n. Denote the 2 -order of an integer x by $\nu_{2}(x)$. We may assume that $\nu_{2}(p-1) \geq \nu_{2}(q-1)$. Let

$$
r= \begin{cases}p, & \text { if } \nu_{2}(p-1)>\nu_{2}(q-1) \\ p q, & \text { if } \nu_{2}(p-1)=\nu_{2}(q-1)\end{cases}
$$

Again by Proposition 11 there is an $a<c \cdot \ln (r)^{2}$ with $\left(\frac{a}{r}\right)=-1$. If u is the odd part of $n-1$, and $b=a^{u}$, then also $\left(\frac{b}{r}\right)=-1$, in particular $b \neq 1$. By strong pseudoprimality there is a k with $b^{2^{k}} \equiv-1 \bmod n$. Thus b has order 2^{k+1} in \mathbb{M}_{p} and in \mathbb{M}_{q}. In particular $2^{k+1} \mid q-1$.

In the case $\nu_{2}(p-1)>\nu_{2}(q-1)$ even $2^{k+1} \left\lvert\, \frac{p-1}{2}\right.$. We conclude $b^{(p-1) / 2} \equiv 1(\bmod p)$, but this contradicts $\left(\frac{b}{p}\right)=\left(\frac{b}{r}\right)=-1$ by EULER's criterion for quadratic residues.

In the case $\nu_{2}(p-1)=\nu_{2}(q-1)$ we have $\left(\frac{b}{p}\right)\left(\frac{b}{q}\right)=\left(\frac{b}{r}\right)=-1$. Thus (without restriction) $\left(\frac{b}{p}\right)=-1,\left(\frac{b}{q}\right)=1$. By Euler's criterion $b^{(q-1) / 2} \equiv 1(\bmod q)$, hence $2^{k+1} \left\lvert\, \frac{q-1}{2}\right., k+2 \leq \nu_{2}(q-1)=\nu_{2}(p-1)$, hence also $b^{(p-1) / 2} \equiv 1(\bmod p)$, contradicting $\left(\frac{b}{p}\right)=-1$.

Therefore for Miller's primality test it suffices to perform the strong pseudoprime test for all prime bases $a<c \cdot \ln (n)^{2}$. This makes total costs of $\mathrm{O}\left(\log (n)^{5}\right)$.

As an example, for a 512-bit integer, that is $n<2^{512}$, testing the 18698 primes <208704 is sufficient. Despite its efficiency this procedure takes some time. Therefore in practice this test is modified in way that is (in a sense yet to specify) not completely exact, but much faster. This is the subject of the next section.

