
3.8 The AKS Algorithm

We describe the algorithm in the version given by Lenstra/Bernstein.
It is not trimmed to uttermost e�ciency but aims at a transparent proof of
polynomiality.

Input

An integer n � 2.
We measure the length of the input by the number ` of bits in the

representation of n to base 2,

` =

(
dlog2 ne, if n is not a power of 2,

k + 1, if n = 2k.

Output

A Boolean value, coded as “COMPOSITE” or “PRIME”.

Step 1

Catch powers of 2:

• If n = 2: output “PRIME”, end.

• (Else) if n is a power of 2: output “COMPOSITE”, end.

We recognize this case by log2 n being an integer.

From now on we may assume that n is not a power of 2, and ` = dlog2 ne.

Step 2

We precompute a big number N 2 N as

N = 2n · (n� 1)(n2
� 1)(n3

� 1) · · · (n4`2
� 1) = 2n ·

4`2Y

i=1

(ni
� 1).

This number is huge, but more importantly:

• The number 4`2 of multiplications is polynomial in `.

• From

N 2n · n
P4`2

i=1 i = 2n · n
4`2(4`2+1)

2 2n · n16`4 ,

we conclude that

k := dlog2Ne 1 + (16`4 + 1) · `

is polynomial in `.

We repeatedly use this integer k in the following. We have N < 2k, and k is
the smallest positive integer with this property.

53

Requirements

We have to find positive integers r and s that satisfy the following require-
ments:

1. r and n are coprime.

2. The integer interval [1, . . . , s] contains no prime divisor of n.

3. For each divisor d | '(r)
q , where q = ordr n,

✓
'(r) + s� 1

s

◆
� n2d·b'(r)

d c.

4. The primality criterion: For all a = 1, . . . , s

(X + a)n ⌘ Xn + a (mod (n,Xr
� 1)).

Step 3

We choose r as the smallest prime that doesn’t divide N . Then r also doesn’t
divide n. In particular requirement 1 is satisfied.

Why can we find r with polynomial cost?
By one of the extensions of the prime number theorem, equation (2), we

have Y

p2k, p prime

p = e#(2k) > 2k > N.

Thus not all primes < 2k divide N .
With costs that are at most quadratic in 2k, and thus polynomial in `,

we get the list of all primes 2k (using Eratosthenes’ sieve).

Step 4

Set s := r. Then requirement 2 is not necessarily satisfied. Hence we run
through the list of primes p < r that is known from step 3:

• If p = n: Output “PRIME”, end.

[This can happen only for “small” n since n grows exponentially with
` but r only polynomially.]

• (Else) If p|n: Output “COMPOSITE”, end.

If we reach this point in the algorithm, then s satisfies requirement 2.

54

Requirement 3

To prove requirement 3 we start with the observation that q := ordr n > 4`2.

Otherwise ni
⌘ 1 (mod r) for some i with 1 i 4`2, hence

r | ni
� 1 |N , contradiction.

Now assume d divides '(r)
q . Then

d
'(r)

q
<

'(r)

4`2
,

2d · b

r
'(r)

d
c 2d ·

r
'(r)

d
=

p
4d'(r) <

'(r)

`
<

'(r)
2log n

,

n2d·b
q

'(r)
d c < n

'(r)
2logn = 2'(r).

On the other hand '(r) � 2, so
✓
'(r) + s� 1

s

◆
=

✓
'(r) + r � 1

r

◆
=

✓
2'(r)

'(r) + 1

◆
� 2'(r).

Hence requirement 3 is satisfied.

Step 5

Next we check requirement 4,

(X + a)n ⌘ Xn + a (mod (n,Xr
� 1))

in a loop for a = 1, . . . , r. The number of iterations is at most r, thus 2k,
hence polynomial in `. During each iteration we have two binary power
computations, hence a total of at most 4` multiplications, the factors being
polynomials of degree < r—polynomial in `—with coe�cients of size < n,
hence of bitlength polynomial in `.

• If an a violates requirement 4, then output “COMPOSITE”, end.

Otherwise all a satisfy requirement 4, therefore n is a prime power by the
AKS criterion.

Step 6

Finally we must decide whether n is a proper prime power. Since the primes
 r don’t divide n, we only have to check in a loop for t with 1 < t < logr n:

• If t
p
n is integer: Output “COMPOSITE”, end.

The number of iterations is `, and the test in each single iteration also
takes polynomial cost, if we compute b t

p
nc by a binary search in the interval

[1 . . . n� 1].

55

• If the algorithm reaches this point, output “PRIME”, end.

This completes the proof of:

Theorem 1 The AKS algorithm decides the primality of n with costs that

depend polynomially on log n.

56

