3.8 The AKS Algorithm

We describe the algorithm in the version given by Lenstra/Bernstein. It is not trimmed to uttermost efficiency but aims at a transparent proof of polynomiality.

Input

An integer $n \geq 2$.
We measure the length of the input by the number ℓ of bits in the representation of n to base 2 ,

$$
\ell= \begin{cases}\left\lceil\log _{2} n\right\rceil, & \text { if } n \text { is not a power of } 2, \\ k+1, & \text { if } n=2^{k} .\end{cases}
$$

Output

A Boolean value, coded as "COMPOSITE" or "PRIME".

Step 1

Catch powers of 2:

- If $n=2$: output "PRIME", end.
- (Else) if n is a power of 2 : output "COMPOSITE", end.

We recognize this case by $\log _{2} n$ being an integer.
From now on we may assume that n is not a power of 2 , and $\ell=\left\lceil\log _{2} n\right\rceil$.

Step 2

We precompute a big number $N \in \mathbb{N}$ as

$$
N=2 n \cdot(n-1)\left(n^{2}-1\right)\left(n^{3}-1\right) \cdots\left(n^{4 \ell^{2}}-1\right)=2 n \cdot \prod_{i=1}^{4 \ell^{2}}\left(n^{i}-1\right) .
$$

This number is huge, but more importantly:

- The number $4 \ell^{2}$ of multiplications is polynomial in ℓ.
- From

$$
N \leq 2 n \cdot n^{\sum_{i=1}^{4 e^{2}} i}=2 n \cdot n^{\frac{4 \ell^{2}\left(4 e^{2}+1\right)}{2}} \leq 2 n \cdot n^{16 \ell^{4}},
$$

we conclude that

$$
k:=\left\lceil\log _{2} N\right\rceil \leq 1+\left(16 \ell^{4}+1\right) \cdot \ell
$$

is polynomial in ℓ.
We repeatedly use this integer k in the following. We have $N<2^{k}$, and k is the smallest positive integer with this property.

Requirements

We have to find positive integers r and s that satisfy the following requirements:

1. r and n are coprime.
2. The integer interval $[1, \ldots, s]$ contains no prime divisor of n.
3. For each divisor $d \left\lvert\, \frac{\varphi(r)}{q}\right.$, where $q=\operatorname{ord}_{r} n$,

$$
\binom{\varphi(r)+s-1}{s} \geq n^{2 d \cdot\left\lfloor\frac{\varphi(r)}{d}\right\rfloor}
$$

4. The primality criterion: For all $a=1, \ldots, s$

$$
(X+a)^{n} \equiv X^{n}+a \quad\left(\bmod \left(n, X^{r}-1\right)\right)
$$

Step 3

We choose r as the smallest prime that doesn't divide N. Then r also doesn't divide n. In particular requirement 1 is satisfied.

Why can we find r with polynomial cost?
By one of the extensions of the prime number theorem, equation (2), we have

$$
\prod_{p \leq 2 k, p \text { prime }} p=e^{\vartheta(2 k)}>2^{k}>N .
$$

Thus not all primes $<2 k$ divide N.
With costs that are at most quadratic in $2 k$, and thus polynomial in ℓ, we get the list of all primes $\leq 2 k$ (using Eratosthenes' sieve).

Step 4

Set $s:=r$. Then requirement 2 is not necessarily satisfied. Hence we run through the list of primes $p<r$ that is known from step 3:

- If $p=n$: Output "PRIME", end.
[This can happen only for "small" n since n grows exponentially with ℓ but r only polynomially.]
- (Else) If $p \mid n$: Output "COMPOSITE", end.

If we reach this point in the algorithm, then s satisfies requirement 2.

Requirement 3

To prove requirement 3 we start with the observation that $q:=\operatorname{ord}_{r} n>4 \ell^{2}$.
Otherwise $n^{i} \equiv 1(\bmod r)$ for some i with $1 \leq i \leq 4 \ell^{2}$, hence $r\left|n^{i}-1\right| N$, contradiction.

Now assume d divides $\frac{\varphi(r)}{q}$. Then

$$
\begin{aligned}
d & \leq \frac{\varphi(r)}{q}<\frac{\varphi(r)}{4 \ell^{2}} \\
2 d \cdot\left\lfloor\sqrt{\frac{\varphi(r)}{d}}\right\rfloor & \leq 2 d \cdot \sqrt{\frac{\varphi(r)}{d}}=\sqrt{4 d \varphi(r)}<\frac{\varphi(r)}{\ell}<\frac{\varphi(r)}{2 \log n} \\
n^{2 d \cdot\left\lfloor\sqrt{\frac{\varphi(r)}{d}}\right\rfloor} & <n^{\frac{\varphi(r)}{2 \log n}}=2^{\varphi(r)}
\end{aligned}
$$

On the other hand $\varphi(r) \geq 2$, so

$$
\binom{\varphi(r)+s-1}{s}=\binom{\varphi(r)+r-1}{r}=\binom{2 \varphi(r)}{\varphi(r)+1} \geq 2^{\varphi(r)}
$$

Hence requirement 3 is satisfied.

Step 5

Next we check requirement 4,

$$
(X+a)^{n} \equiv X^{n}+a \quad\left(\bmod \left(n, X^{r}-1\right)\right)
$$

in a loop for $a=1, \ldots, r$. The number of iterations is at most r, thus $\leq 2 k$, hence polynomial in ℓ. During each iteration we have two binary power computations, hence a total of at most 4ℓ multiplications, the factors being polynomials of degree $<r$-polynomial in ℓ-with coefficients of size $<n$, hence of bitlength polynomial in ℓ.

- If an a violates requirement 4, then output "COMPOSITE", end.

Otherwise all a satisfy requirement 4 , therefore n is a prime power by the AKS criterion.

Step 6

Finally we must decide whether n is a proper prime power. Since the primes $\leq r$ don't divide n, we only have to check in a loop for t with $1<t<\log _{r} n$:

- If $\sqrt[t]{n}$ is integer: Output "COMPOSITE", end.

The number of iterations is $\leq \ell$, and the test in each single iteration also takes polynomial cost, if we compute $\lfloor\sqrt[t]{n}\rfloor$ by a binary search in the interval $[1 \ldots n-1]$.

- If the algorithm reaches this point, output "PRIME", end.

This completes the proof of:

Theorem 1 The AKS algorithm decides the primality of n with costs that depend polynomially on $\log n$.

