3.8 The AKS Algorithm

We describe the algorithm in the version given by LENSTRA/BERNSTEIN.
It is not trimmed to uttermost efficiency but aims at a transparent proof of
polynomiality.

Input

An integer n > 2.
We measure the length of the input by the number ¢ of bits in the
representation of n to base 2,

/- [logon], if m is not a power of 2,
) k+1, ifn=2k

Output
A Boolean value, coded as “COMPOSITE” or “PRIME”.

Step 1

Catch powers of 2:
o If n = 2: output “PRIME”, end.

e (Else) if n is a power of 2: output “COMPOSITE”, end.
We recognize this case by log, n being an integer.

From now on we may assume that n is not a power of 2, and ¢ = [log, n].

Step 2

We precompute a big number N € N as

402
N=2n-(n-1)n>-1)n* 1) @ —1)=2n-[[(n" - 1).

This number is huge, but more importantly:

e The number 4¢? of multiplications is polynomial in /.

e From

402 (402 41) 4
-5 < n - nlﬁg

—)

N§2n~n2?i21i =2n-n
we conclude that
k= [logy N1 <1+ (166 +1)-¢
is polynomial in £.

We repeatedly use this integer k in the following. We have N < 2*, and k is
the smallest positive integer with this property.

53

Requirements

We have to find positive integers r and s that satisfy the following require-
ments:

1. r and n are coprime.

2. The integer interval [1, ..., s| contains no prime divisor of n.

3. For each divisor d | “’E;), where ¢ = ord, n,

(so(r) +5- 1> > p2 2P
s
4. The primality criterion: For alla =1,...,s

(X+a)"=X"+a (mod (n, X" —1)).

Step 3

We choose r as the smallest prime that doesn’t divide V. Then r also doesn’t
divide n. In particular requirement 1 is satisfied.

Why can we find r with polynomial cost?

By one of the extensions of the prime number theorem, equation , we

have
H p:eﬂ(2k)>2k>N.
p<2k, p prime

Thus not all primes < 2k divide N.
With costs that are at most quadratic in 2k, and thus polynomial in ¢,
we get the list of all primes < 2k (using ERATOSTHENES’ sieve).

Step 4

Set s := r. Then requirement 2 is not necessarily satisfied. Hence we run
through the list of primes p < r that is known from step 3:

e If p = n: Output “PRIME”, end.

[This can happen only for “small” n since n grows exponentially with
¢ but r only polynomially.]

e (Else) If p|n: Output “COMPOSITE”, end.

If we reach this point in the algorithm, then s satisfies requirement 2.

54

Requirement 3
To prove requirement 3 we start with the observation that ¢ := ord, n > 4¢2.

Otherwise n* = 1 (mod r) for some ¢ with 1 < i < 4¢?, hence
r|n"—1| N, contradiction.

Now assume d divides @. Then

T
w5 5 5 <0<
o(r)

nZd'l- ‘PE;)J < nzlogn — 2‘10(7')'

On the other hand ¢(r) > 2, so

<<,o<r> +a- 1) _ <90(7") +r- 1) _ (Sj@)(f 1) e

Hence requirement 3 is satisfied.

Step 5
Next we check requirement 4,
X+a)"=X"4+a (mod (n,X"—1))

in a loop for a = 1,...,r. The number of iterations is at most r, thus < 2k,
hence polynomial in ¢. During each iteration we have two binary power
computations, hence a total of at most 4/ multiplications, the factors being
polynomials of degree < r—polynomial in /—with coefficients of size < n,
hence of bitlength polynomial in £.

e If an a violates requirement 4, then output “COMPOSITE”, end.
Otherwise all a satisfy requirement 4, therefore n is a prime power by the
AKS criterion.

Step 6

Finally we must decide whether n is a proper prime power. Since the primes
< r don’t divide n, we only have to check in a loop for ¢t with 1 < ¢t < log,. n:

e If \/n is integer: Output “COMPOSITE”, end.

The number of iterations is < /¢, and the test in each single iteration also
takes polynomial cost, if we compute |/n| by a binary search in the interval
[1...n—1].

55

e If the algorithm reaches this point, output “PRIME”, end.

This completes the proof of:

Theorem 1 The AKS algorithm decides the primality of n with costs that
depend polynomially on logn.

56

