
3.7 The AKS Primality Test

Miller reduced the quest for an e�cient deterministic primality test to
the extended Riemann hypothesis. In August 2002 the three Indian mathe-
maticians Manindra Agrawal, Neeraj Kayal und Nitin Saxena surprised
the scientific community with a complete proof that relied on an astonish-
ingly simple deterministic algorithm. It immediately was baptized “AKS
primality test”. The fastest known version costs O(log(n)6).

Proposition 13 (Basic criterion) Let a, n 2 Z be coprime, n � 2. Then
the following statements are equivalent:

(i) n is prime.

(ii) (X + a)n ⌘ Xn + a (mod n) in the polynomial ring Z[X].

Proof. From the binomial theorem we have

(X + a)n =
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in Z[X].
“(i) =) (ii)”: If n is prime, then n|
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for i = 1, . . . , n � 1, hence

(X + a)n ⌘ Xn + an (mod n). By Fermat’s theorem an ⌘ a (mod n).
“(ii) =) (i)”: If n is composite, then we choose a prime q|n, and k with

qk|n and qk+1
6 |n. Then q 6= n and
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Hence the coe�cient of Xq in (X + a)n is 6= 0 in Z/nZ. 3

Remarks

1. Looking at the absolute term in (ii) we see that the basic criterion
generalizes Fermat’s theorem.

2. Consider the ideal qr := (n,Xr
� 1) E Z[X] for r 2 N. If n is prime,

then (X + a)n ⌘ Xn + a (mod qr). This shows:

Corollary 1 If n is prime, then in the polynomial ring Z[X]

(X + a)n ⌘ Xn + a (mod qr)

for all a 2 Z with gcd(a, n) = 1 and all r 2 N.
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Applying the basic criterion as a primality test in a naive way would
cost about log2 n multiplications of polynomials in Z/nZ[X] using the bi-
nary power algorithm. But these multiplications become more and more
expensive, in the last step we have to multiply two polynomials of degree
about n

2 for an expense of size about n. The corollary bounds the degrees
by r � 1, but its condition is only necessary, not su�cient.

The sticking point of the AKS algorithm is a converse of the corollary
that says that we need to try only “few” values of a, however su�ciently
many, for a suitable fixed r:

Proposition 14 (AKS criterion, H. W. Lenstra’s version) Let n be

an integer � 2. Let r 2 N be coprime with n. Let q := ordr n be the order

of n in the multiplicative group Mr = (Z/rZ)⇥. Furthermore let s � 1 be an

integer with gcd(n, a) = 1 for all a = 1, . . . , s and

✓
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for each divisor d|'(r)q . Assume

(X + a)n ⌘ Xn + a (mod q) for all a = 1, . . . s

with the ideal q = qr = (n,Xr
� 1) E Z[X]. Then n is a prime power.

We reproduce the proof by D. Bernstein, breaking it up into a series
of lemmas and corollaries.

Lemma 5 For all a = 1, . . . s and all i 2 N

(X + a)n
i
⌘ Xni

+ a (mod q).

Proof. We reason by induction over i. In

(X + a)n = Xn + a+ n · f(X) + (Xr
� 1) · g(X)

we substitute X 7! Xni
in Z[X]:

(X + a)n
i+1

⌘ (Xni
+ a)n = Xni·n + a+ n · f(Xni

) + (Xni·r
� 1) · g(Xni

)

⌘ Xni+1
+ a (mod q),

since Xnir
�1 = (Xr)n

i
�1 = (Xr

�1)(Xr·(ni�1)+ · · ·+Xr+1) is a multiple
of Xr

� 1. 3

Now let p|n be a prime divisor. Claim: n is a power of p.
We enlarge the ideal q = (n,Xr

� 1) E Z[X] to q̂ := (p,Xr
� 1) E Z[X].

Then the identity from Lemma 5 holds also mod q̂, and since we now calcu-
late mod p, we even have:
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Corollary 2 For all a = 1, . . . s and all i, j 2 N

(X + a)n
ipj

⌘ Xnipj + a (mod q̂).

Let H := hn, pi  Mr be the subgroup generated by the residue classes
n mod r and p mod r. Let

d := #(Mr/H) =
'(r)

#H
.

From q = ordr n |#H we have d | '(r)
q . Hence d satisfies the precondition of

Proposition 14. For the remainder of the proof we fix a complete system of
representants {m1, . . . ,md} ✓ Mr of Mr/H. Corollary 2 then extends to

Corollary 3 For all a = 1, . . . s, all k = 1, . . . , d, and all i, j 2 N

(Xmk + a)n
ipj

⌘ Xmknipj + a (mod q̂).

Proof. We use the same trick as in Lemma 5 and substitute X 7! Xmk in
Z[X]:

(X + a)n
ipj = Xnipj + a+ p · f(X) + (Xr

� 1) · g(X) in Z[X],

(Xmk + a)n
ipj = Xmknipj + a+ p · f(Xmk) + (Xmk·r � 1) · g(Xmk),

and from this the proof is immediate. 3

The products nipj 2 N with 0  i, j  b

q
'(r)
d c are bounded by

1  nipj  n2·b
q

'(r)
d c.

The number of such pairs (i, j) 2 N2 is (b
q

'(r)
d c + 1)2 > '(r)

d , and all

nipj mod r are contained in the subgroup H with #H = '(r)
d . Hence there

are di↵erent (i, j) 6= (h, l) with

nipj ⌘ nhpl (mod r) .

We even have i 6= h—otherwise pj ⌘ pl (mod r), hence p|r. Thus we have
shown the first part of the following lemma:

Lemma 6 There exist i, j, h, l with 0  i, j, h, l  b

q
'(r)
d c and i 6= h such

that for t := nipj, u := nhpl, the congruence t ⌘ u (mod r) is satisfied, and

|t� u|  n2·b
q

'(r)
d c

� 1, as well as

(Xmk + a)t ⌘ (Xmk + a)u (mod q̂)

for all a = 1, . . . , s and all k = 1, . . . d.
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Proof. The latter congruence follows from Xt = Xu+cr
⌘ Xu (mod Xr

�1),
hence

(Xmk + a)t ⌘ Xmkt + a ⌘ Xmku + a ⌘ (Xmk + a)u (mod q̂),

for all a and k. 3

Now r and n are coprime, and p is a prime divisor of n, thusXr
�1 has no

multiple zeroes in an algebraic closure of Fp. Hence it has r distinct zeroes,
and these are the r-th roots of unity mod p. They form a cyclic group by
Proposition 2. Let ⇣ be a generating element, that is a primitive r-th root
of unity. For one of the irreducible divisors h 2 Fp[X] of Xr

� 1 we have
h(⇣) = 0. Let

K = Fp[⇣] ⇠= Fp[X]/hFp[X] ⇠= Z[X]/ˆ̂q

with the ideal ˆ̂q = (p, h) E Z[X]. Thus we have an ascending chain of ideals

q = (n,Xr
� 1) ,! q̂ = (p,Xr

� 1) ,! ˆ̂q = (p, h) E Z[X]

and a corresponding chain of surjections

Z[X] �! Z[X]/q �! Fp[X]/(Xr
� 1) �! K = Fp[⇣] ⇠= Fp[X]/hFp[X].

Lemma 7 With the notations of Lemma 6 we have in K:

(i) (⇣mk + a)t = (⇣mk + a)u for all a = 1, . . . , s and all k = 1, . . . d.

(ii) If G  K⇥
is the subgroup generated by the ⇣mk + a 6= 0, then gt = gu

for all g 2 Ḡ := G [ {0}.

Proof. (i) follows from Lemma 6 using the homomorphism Z[X] �! K,

X 7! ⇣ with kernel ˆ̂q ◆ q̂.
(ii) is a direct consequence from (i). 3

The X + a 2 Fp[X] for a = 1, . . . s are pairwise distinct irreducible
polynomials since p > s by the premises of Proposition 14. Thus also all
products

fe :=
sY

a=1

(X + a)ea for e = (e1, . . . , es) 2 Ns

are distinct in Fp[X]. We consider their images under the map

� : Fp[X] �! Kd,

f 7! (f(⇣m1), . . . , f(⇣md)) .

Lemma 8 The images �(fe) 2 Kd
of the fe with

deg fe =
Ps

a=1 ea  '(r)� 1 are pairwise distinct.
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Proof. Assume �(fc) = �(fe). By Corollary 3 for k = 1, . . . , d

fc(X
mk)n

ipj =
sY

a=1

(Xmk + a)n
ipjca ⌘

sY

a=1

(Xmknipj + a)ca

= fc(X
mknipj ) (mod q̂)

and likewise
fe(X

mk)n
ipj

⌘ fe(X
mknipj ) (mod q̂) ,

a forteriori mod ˆ̂q. Applying � to the left-hand sides yields

fc(X
mknipj ) ⌘ fe(X

mknipj ) (mod ˆ̂q) .

Thus for the di↵erence g := fc � fe 2 Fp[X] we have g(Xmknipj ) 2 hFp[X]
for all k = 1, . . . , d. Let b 2 [1 . . . r � 1] be coprime with r, hence represent
an element of Mr. Then b is contained in one of the cosets mkH of Mr/H.
Thus there exist k, i, and j with b ⌘ mknipj (mod r). Hence

g(Xb)� g(Xmknipj ) 2 (Xr
� 1)Fp[X] ✓ hFp[X],

hence g(Xb) 2 hFp[X], and g(⇣b) = 0. Thus g has the '(r) di↵erent zeroes
⇣b in K. But the degree of g is < '(r). Hence g = 0, and fc = fe. 3

Corollary 4

#Ḡ �

✓
'(r) + s� 1

s

◆1/d

� |t� u|+ 1.

Proof. There are
�'(r)+s�1

s

�
options for choosing the exponents (e1, . . . , es)

as in Lemma 8. Since all �(fe) 2 Ḡd, we conclude

#Ḡd
�

✓
'(r) + s� 1

s

◆
� n2d·b

q
'(r)
d c

by the premises of Proposition 14, hence

#Ḡ � n2·b
q

'(r)
d c

� |t� u|+ 1

by Lemma 6. 3

Now we can complete the proof of Proposition 14: Since gt = gu for all
g 2 Ḡ ✓ K, the polynomial X |t�u| has more than |t� u| zeroes in K. This
is possible only if t = u. By the definition of t and u (in Lemma 6) n is a
power of p.

This proves Proposition 14. 3
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