3.7 The AKS Primality Test

Miller reduced the quest for an efficient deterministic primality test to the extended Riemann hypothesis. In August 2002 the three Indian mathematicians Manindra Agrawal, Neeraj Kayal und Nitin Saxena surprised the scientific community with a complete proof that relied on an astonishingly simple deterministic algorithm. It immediately was baptized "AKS primality test". The fastest known version costs $\mathrm{O}\left(\log (n)^{6}\right)$.

Proposition 13 (Basic criterion) Let $a, n \in \mathbb{Z}$ be coprime, $n \geq 2$. Then the following statements are equivalent:
(i) n is prime.
(ii) $(X+a)^{n} \equiv X^{n}+a(\bmod n)$ in the polynomial ring $\mathbb{Z}[X]$.

Proof. From the binomial theorem we have

$$
(X+a)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{n-i} X^{i}
$$

in $\mathbb{Z}[X]$.
$"(\mathrm{i}) \Longrightarrow(\mathrm{ii}) "$: If n is prime, then $\left.n \left\lvert\, \begin{array}{c}n \\ i\end{array}\right.\right)$ for $i=1, \ldots, n-1$, hence $(X+a)^{n} \equiv X^{n}+a^{n}(\bmod n)$. By Fermat's theorem $a^{n} \equiv a(\bmod n)$.
"(ii) \Longrightarrow (i)": If n is composite, then we choose a prime $q \mid n$, and k with $q^{k} \mid n$ and $q^{k+1} \quad X n$. Then $q \neq n$ and

$$
q^{k} \times\binom{ n}{q}=\frac{n \cdots(n-q+1)}{1 \cdots q} .
$$

Hence the coefficient of X^{q} in $(X+a)^{n}$ is $\neq 0$ in $\mathbb{Z} / n \mathbb{Z} . \diamond$

Remarks

1. Looking at the absolute term in (ii) we see that the basic criterion generalizes Fermat's theorem.
2. Consider the ideal $\mathfrak{q}_{r}:=\left(n, X^{r}-1\right) \unlhd \mathbb{Z}[X]$ for $r \in \mathbb{N}$. If n is prime, then $(X+a)^{n} \equiv X^{n}+a\left(\bmod \mathfrak{q}_{r}\right)$. This shows:

Corollary 1 If n is prime, then in the polynomial ring $\mathbb{Z}[X]$

$$
(X+a)^{n} \equiv X^{n}+a \quad\left(\bmod \mathfrak{q}_{r}\right)
$$

for all $a \in \mathbb{Z}$ with $\operatorname{gcd}(a, n)=1$ and all $r \in \mathbb{N}$.

Applying the basic criterion as a primality test in a naive way would cost about $\log _{2} n$ multiplications of polynomials in $\mathbb{Z} / n \mathbb{Z}[X]$ using the binary power algorithm. But these multiplications become more and more expensive, in the last step we have to multiply two polynomials of degree about $\frac{n}{2}$ for an expense of size about n. The corollary bounds the degrees by $r-1$, but its condition is only necessary, not sufficient.

The sticking point of the AKS algorithm is a converse of the corollary that says that we need to try only "few" values of a, however sufficiently many, for a suitable fixed r :

Proposition 14 (AKS criterion, H. W. Lenstra's version) Let n be an integer ≥ 2. Let $r \in \mathbb{N}$ be coprime with n. Let $q:=\operatorname{ord}_{r} n$ be the order of n in the multiplicative group $\mathbb{M}_{r}=(\mathbb{Z} / r \mathbb{Z})^{\times}$. Furthermore let $s \geq 1$ be an integer with $\operatorname{gcd}(n, a)=1$ for all $a=1, \ldots, s$ and

$$
\binom{\varphi(r)+s-1}{s} \geq n^{2 d \cdot\left\lfloor\sqrt{\frac{\varphi(r)}{d}}\right\rfloor}
$$

for each divisor $d \left\lvert\, \frac{\varphi(r)}{q}\right.$. Assume

$$
(X+a)^{n} \equiv X^{n}+a \quad(\bmod \mathfrak{q}) \quad \text { for all } a=1, \ldots s
$$

with the ideal $\mathfrak{q}=\mathfrak{q}_{r}=\left(n, X^{r}-1\right) \unlhd \mathbb{Z}[X]$. Then n is a prime power.
We reproduce the proof by D. Bernstein, breaking it up into a series of lemmas and corollaries.

Lemma 5 For all $a=1, \ldots s$ and all $i \in \mathbb{N}$

$$
(X+a)^{n^{i}} \equiv X^{n^{i}}+a \quad(\bmod \mathfrak{q})
$$

Proof. We reason by induction over i. In

$$
(X+a)^{n}=X^{n}+a+n \cdot f(X)+\left(X^{r}-1\right) \cdot g(X)
$$

we substitute $X \mapsto X^{n^{i}}$ in $\mathbb{Z}[X]$:

$$
\begin{aligned}
(X+a)^{n^{i+1}} \equiv\left(X^{n^{i}}+a\right)^{n} & =X^{n^{i} \cdot n}+a+n \cdot f\left(X^{n^{i}}\right)+\left(X^{n^{i} \cdot r}-1\right) \cdot g\left(X^{n^{i}}\right) \\
& \equiv X^{n^{i+1}}+a \quad(\bmod \mathfrak{q})
\end{aligned}
$$

since $X^{n^{i} r}-1=\left(X^{r}\right)^{n^{i}}-1=\left(X^{r}-1\right)\left(X^{r \cdot\left(n^{i}-1\right)}+\cdots+X^{r}+1\right)$ is a multiple of $X^{r}-1$.

Now let $p \mid n$ be a prime divisor. Claim: n is a power of p.
We enlarge the ideal $\mathfrak{q}=\left(n, X^{r}-1\right) \unlhd \mathbb{Z}[X]$ to $\hat{\mathfrak{q}}:=\left(p, X^{r}-1\right) \unlhd \mathbb{Z}[X]$. Then the identity from Lemma 5 holds also $\bmod \hat{\mathfrak{q}}$, and since we now calculate $\bmod p$, we even have:

Corollary 2 For all $a=1, \ldots s$ and all $i, j \in \mathbb{N}$

$$
(X+a)^{n^{i} p^{j}} \equiv X^{n^{i} p^{j}}+a \quad(\bmod \hat{\mathfrak{q}})
$$

Let $H:=\langle n, p\rangle \leq \mathbb{M}_{r}$ be the subgroup generated by the residue classes $n \bmod r$ and $p \bmod r$. Let

$$
d:=\#\left(\mathbb{M}_{r} / H\right)=\frac{\varphi(r)}{\# H}
$$

From $q=\operatorname{ord}_{r} n \mid \# H$ we have $d \left\lvert\, \frac{\varphi(r)}{q}\right.$. Hence d satisfies the precondition of Proposition 14 . For the remainder of the proof we fix a complete system of representants $\left\{m_{1}, \ldots, m_{d}\right\} \subseteq \mathbb{M}_{r}$ of \mathbb{M}_{r} / H. Corollary 2 then extends to

Corollary 3 For all $a=1, \ldots s$, all $k=1, \ldots, d$, and all $i, j \in \mathbb{N}$

$$
\left(X^{m_{k}}+a\right)^{n^{i} p^{j}} \equiv X^{m_{k} n^{i} p^{j}}+a \quad(\bmod \hat{\mathfrak{q}})
$$

Proof. We use the same trick as in Lemma 5 and substitute $X \mapsto X^{m_{k}}$ in $\mathbb{Z}[X]$:

$$
\begin{aligned}
(X+a)^{n^{i} p^{j}} & =X^{n^{i} p^{j}}+a+p \cdot f(X)+\left(X^{r}-1\right) \cdot g(X) \text { in } \mathbb{Z}[X], \\
\left(X^{m_{k}}+a\right)^{n^{i} p^{j}} & =X^{m_{k} n^{i} p^{j}}+a+p \cdot f\left(X^{m_{k}}\right)+\left(X^{m_{k} \cdot r}-1\right) \cdot g\left(X^{m_{k}}\right)
\end{aligned}
$$

and from this the proof is immediate.

The products $n^{i} p^{j} \in \mathbb{N}$ with $0 \leq i, j \leq\left\lfloor\sqrt{\frac{\varphi(r)}{d}}\right\rfloor$ are bounded by

$$
1 \leq n^{i} p^{j} \leq n^{2 \cdot\left\lfloor\sqrt{\frac{\varphi(r)}{d}}\right\rfloor}
$$

The number of such pairs $(i, j) \in \mathbb{N}^{2}$ is $\left(\left\lfloor\sqrt{\frac{\varphi(r)}{d}}\right\rfloor+1\right)^{2}>\frac{\varphi(r)}{d}$, and all $n^{i} p^{j} \bmod r$ are contained in the subgroup H with $\# H=\frac{\varphi(r)}{d}$. Hence there are different $(i, j) \neq(h, l)$ with

$$
n^{i} p^{j} \equiv n^{h} p^{l} \quad(\bmod r)
$$

We even have $i \neq h —$ otherwise $p^{j} \equiv p^{l}(\bmod r)$, hence $p \mid r$. Thus we have shown the first part of the following lemma:

Lemma 6 There exist i, j, h, l with $0 \leq i, j, h, l \leq\left\lfloor\sqrt{\frac{\varphi(r)}{d}}\right\rfloor$ and $i \neq h$ such that for $t:=n^{i} p^{j}, u:=n^{h} p^{l}$, the congruence $t \equiv u(\bmod r)$ is satisfied, and $|t-u| \leq n^{2 \cdot\left\lfloor\sqrt{\frac{\varphi(r)}{d}}\right\rfloor}-1$, as well as

$$
\left(X^{m_{k}}+a\right)^{t} \equiv\left(X^{m_{k}}+a\right)^{u} \quad(\bmod \hat{\mathfrak{q}})
$$

for all $a=1, \ldots, s$ and all $k=1, \ldots d$.

Proof. The latter congruence follows from $X^{t}=X^{u+c r} \equiv X^{u}\left(\bmod X^{r}-1\right)$, hence

$$
\left(X^{m_{k}}+a\right)^{t} \equiv X^{m_{k} t}+a \equiv X^{m_{k} u}+a \equiv\left(X^{m_{k}}+a\right)^{u} \quad(\bmod \hat{\mathfrak{q}})
$$

for all a and k. \diamond

Now r and n are coprime, and p is a prime divisor of n, thus $X^{r}-1$ has no multiple zeroes in an algebraic closure of \mathbb{F}_{p}. Hence it has r distinct zeroes, and these are the r-th roots of unity $\bmod p$. They form a cyclic group by Proposition 2 Let ζ be a generating element, that is a primitive r-th root of unity. For one of the irreducible divisors $h \in \mathbb{F}_{p}[X]$ of $X^{r}-1$ we have $h(\zeta)=0$. Let

$$
K=\mathbb{F}_{p}[\zeta] \cong \mathbb{F}_{p}[X] / h \mathbb{F}_{p}[X] \cong \mathbb{Z}[X] / \hat{\hat{\mathfrak{q}}}
$$

with the ideal $\hat{\hat{\mathfrak{q}}}=(p, h) \unlhd \mathbb{Z}[X]$. Thus we have an ascending chain of ideals

$$
\mathfrak{q}=\left(n, X^{r}-1\right) \hookrightarrow \hat{\mathfrak{q}}=\left(p, X^{r}-1\right) \hookrightarrow \hat{\hat{\mathfrak{q}}}=(p, h) \unlhd \mathbb{Z}[X]
$$

and a corresponding chain of surjections

$$
\mathbb{Z}[X] \longrightarrow \mathbb{Z}[X] / \mathfrak{q} \longrightarrow \mathbb{F}_{p}[X] /\left(X^{r}-1\right) \longrightarrow K=\mathbb{F}_{p}[\zeta] \cong \mathbb{F}_{p}[X] / h \mathbb{F}_{p}[X]
$$

Lemma 7 With the notations of Lemma (6) we have in K :
(i) $\left(\zeta^{m_{k}}+a\right)^{t}=\left(\zeta^{m_{k}}+a\right)^{u}$ for all $a=1, \ldots$, s and all $k=1, \ldots d$.
(ii) If $G \leq K^{\times}$is the subgroup generated by the $\zeta^{m_{k}}+a \neq 0$, then $g^{t}=g^{u}$ for all $g \in \bar{G}:=G \cup\{0\}$.

Proof. (i) follows from Lemma 6 using the homomorphism $\mathbb{Z}[X] \longrightarrow K$, $X \mapsto \zeta$ with kernel $\hat{\mathfrak{q}} \supseteq \hat{\mathfrak{q}}$.
(ii) is a direct consequence from (i).

The $X+a \in \mathbb{F}_{p}[X]$ for $a=1, \ldots s$ are pairwise distinct irreducible polynomials since $p>s$ by the premises of Proposition 14 Thus also all products

$$
f_{e}:=\prod_{a=1}^{s}(X+a)^{e_{a}} \quad \text { for } e=\left(e_{1}, \ldots, e_{s}\right) \in \mathbb{N}^{s}
$$

are distinct in $\mathbb{F}_{p}[X]$. We consider their images under the map

$$
\begin{aligned}
& \Phi: \mathbb{F}_{p}[X] \longrightarrow K^{d} \\
& f \mapsto \\
&\left(f\left(\zeta^{m_{1}}\right), \ldots, f\left(\zeta^{m_{d}}\right)\right)
\end{aligned}
$$

Lemma 8 The images $\Phi\left(f_{e}\right) \in K^{d}$ of the f_{e} with $\operatorname{deg} f_{e}=\sum_{a=1}^{s} e_{a} \leq \varphi(r)-1$ are pairwise distinct.

Proof. Assume $\Phi\left(f_{c}\right)=\Phi\left(f_{e}\right)$. By Corollary 3 for $k=1, \ldots, d$

$$
\begin{gathered}
f_{c}\left(X^{m_{k}}\right)^{n^{i} p^{j}}=\prod_{a=1}^{s}\left(X^{m_{k}}+a\right)^{n^{i} p^{j} c_{a}} \equiv \prod_{a=1}^{s}\left(X^{m_{k} n^{i} p^{j}}+a\right)^{c_{a}} \\
=f_{c}\left(X^{m_{k} n^{i} p^{j}}\right) \quad(\bmod \hat{\mathfrak{q}})
\end{gathered}
$$

and likewise

$$
f_{e}\left(X^{m_{k}}\right)^{n^{i} p^{j}} \equiv f_{e}\left(X^{m_{k} n^{i} p^{j}}\right) \quad(\bmod \hat{\mathfrak{q}})
$$

a forteriori $\bmod \hat{\hat{\mathfrak{q}}}$. Applying Φ to the left-hand sides yields

$$
f_{c}\left(X^{m_{k} n^{i} p^{j}}\right) \equiv f_{e}\left(X^{m_{k} n^{i} p^{j}}\right) \quad(\bmod \hat{\hat{\mathfrak{q}}})
$$

Thus for the difference $g:=f_{c}-f_{e} \in \mathbb{F}_{p}[X]$ we have $g\left(X^{m_{k} n^{i} p^{j}}\right) \in h \mathbb{F}_{p}[X]$ for all $k=1, \ldots, d$. Let $b \in[1 \ldots r-1]$ be coprime with r, hence represent an element of \mathbb{M}_{r}. Then b is contained in one of the cosets $m_{k} H$ of \mathbb{M}_{r} / H. Thus there exist k, i, and j with $b \equiv m_{k} n^{i} p^{j}(\bmod r)$. Hence

$$
g\left(X^{b}\right)-g\left(X^{m_{k} n^{i} p^{j}}\right) \in\left(X^{r}-1\right) \mathbb{F}_{p}[X] \subseteq h \mathbb{F}_{p}[X]
$$

hence $g\left(X^{b}\right) \in h \mathbb{F}_{p}[X]$, and $g\left(\zeta^{b}\right)=0$. Thus g has the $\varphi(r)$ different zeroes ζ^{b} in K. But the degree of g is $<\varphi(r)$. Hence $g=0$, and $f_{c}=f_{e} . \diamond$

Corollary 4

$$
\# \bar{G} \geq\binom{\varphi(r)+s-1}{s}^{1 / d} \geq|t-u|+1
$$

Proof. There are $\binom{\varphi(r)+s-1}{s}$ options for choosing the exponents $\left(e_{1}, \ldots, e_{s}\right)$ as in Lemma 8. Since all $\Phi\left(f_{e}\right) \in \bar{G}^{d}$, we conclude

$$
\# \bar{G}^{d} \geq\binom{\varphi(r)+s-1}{s} \geq n^{2 d \cdot\left\lfloor\sqrt{\frac{\varphi(r)}{d}}\right\rfloor}
$$

by the premises of Proposition 14, hence

$$
\# \bar{G} \geq n^{2 \cdot\left\lfloor\sqrt{\frac{\varphi(r)}{d}}\right\rfloor} \geq|t-u|+1
$$

by Lemma 6, \diamond
Now we can complete the proof of Proposition 14. Since $g^{t}=g^{u}$ for all $g \in \bar{G} \subseteq K$, the polynomial $X^{|t-u|}$ has more than $|t-u|$ zeroes in K. This is possible only if $t=u$. By the definition of t and u (in Lemma 6) n is a power of p.

This proves Proposition $14 \diamond$

