2.3 The Probability of Flops

Let $n \in \mathbb{N}_3$. Furthermore assume that $u \in \mathbb{N}_2$ is even, $u = r \cdot 2^s$ with odd r and $s \ge 1$. We introduce the sets:

$$\begin{array}{rcl} A_{u}^{(0)} & = & B_{u}^{(0)} := \{ w \in \mathbb{M}_{n} \mid w^{r} = 1 \} & [\text{case } (\mathbf{E}_{n,u}/\mathbf{I})], \\ A_{u}^{(t)} & := & \{ w \in \mathbb{M}_{n} \mid w^{r \cdot 2^{t}} = 1, w^{r \cdot 2^{t-1}} \neq 1 \} & \text{for } 1 \leq t \leq s, \\ B_{u}^{(t)} & := & \{ w \in A_{u}^{(t)} \mid w^{r \cdot 2^{t-1}} = -1 \} & [\text{case } (\mathbf{E}_{n,u}/\mathbf{II})], \\ A_{u} & := & \bigcup_{t=0}^{s} A_{u}^{(t)} = \{ w \in \mathbb{M}_{n} \mid w^{u} = 1 \}, \\ B_{u} & := & \bigcup_{t=0}^{s} B_{u}^{(t)} & [\text{case } (\mathbf{E}_{n,u}) \ (\text{I or II})]. \\ C_{0} & := & \{ w \in \mathbb{M}_{n} \mid \text{ord } w \ \text{odd} \}, \\ C_{1} & := & \{ w \in \mathbb{M}_{n} \mid -1 \in \langle w \rangle \}, \\ C & := & C_{0} \cup C_{1}. \end{array}$$

Remarks

- $A_u^0 \leq A_u \leq \mathbb{M}_n$ are subgroups, as are $A_u^0 \leq C_0 \leq \mathbb{M}_n$.
- $B_u^{(t)} = A_u^{(t)} \cap C$ for $t = 0, \ldots, s$, since a cyclic group $\langle w \rangle$ can contain at most one square root of 1 in addition to 1 itself.
- Hence also $B_u = A_u \cap C$.
- B_u is the exceptional set of "bad" integers with $(E_{n,u})$ from Section 2.2 that flop with factoring n. The following proposition upper bounds by $\frac{1}{2}$ the probability of hitting an element of this set by pure chance. If we try k random candidate integers the probability of not factoring nis $< 1/2^k$, hence *extremely* small even for moderate sizes of k

Proposition 4 Let n be odd and not a prime power. Let $u = r \cdot 2^s$ be a multiple of $\lambda(n)$ with odd r. Then

$$\#B_u \le \frac{1}{2} \cdot \varphi(n).$$

Proof. By the following lemma C, and a forteriori B_u , is contained in a proper subgroup of \mathbb{M}_n . \diamond

Lemma 1 (DIXON, AMM 1984) Let $n \in \mathbb{N}_3$. Assume $\langle C \rangle = \mathbb{M}_n$. Then n is a prime power or even.

Proof. For this proof let $\lambda(n) = r \cdot 2^s$ with odd r. (Since $n \ge 3$, we have $s \ge 1$. The "old" meanings of r and s don't occur in this proof.) Consider the map

$$h: \mathbb{M}_n \longrightarrow \mathbb{M}_n, \qquad w \mapsto w^{r \cdot 2^{s-1}}.$$

This h is a group homomorphism with $h(\mathbb{M}_n) \subseteq \{v \in \mathbb{M}_n \mid v^2 = 1\}$ (group of square roots of 1 mod n). Since the $w \in C_0$ have odd order $h(C_0) \subseteq \{1\}$.

For $w \in C_1$ we have $h(w) \in \langle w \rangle$ and $h(w)^2 = 1$, hence h(w) is one of the two roots of unity $\pm 1 \in \langle w \rangle$.

Together we have $h(C) \subseteq \{\pm 1\}$.

If n is not a prime power (and a forteriori not a prime) there is a decomposition n = pq into coprime factors $p, q \in \mathbb{N}_2$. Since $2^s|\lambda(n) = \operatorname{lcm}(\lambda(p), \lambda(q))$ we may assume $2^s|\lambda(p)$. The chinese remainder theorem provides a $w \in \mathbb{M}_n$ with $w \equiv 1 \pmod{q}$ such that $w \mod p$ has order 2^s . Then $h(w) \not\equiv 1 \pmod{p}$, a forteriori $h(w) \neq 1$. Since $h(w) \equiv 1$ (mod q) we also have $h(w) \neq -1$ —except when q = 2.

Therefore if n is not even nor a prime power we have the contradiction $h(\mathbb{M}_n) \not\subseteq \{\pm 1\}$. \diamond

This also completes the missing step of Section 2.2 Who knows the private RSA key is able to factor the module n.