2.3 The Probability of Flops

Let $n \in \mathbb{N}_{3}$. Furthermore assume that $u \in \mathbb{N}_{2}$ is even, $u=r \cdot 2^{s}$ with odd r and $s \geq 1$. We introduce the sets:

$$
\begin{aligned}
A_{u}^{(0)} & =B_{u}^{(0)}:=\left\{w \in \mathbb{M}_{n} \mid w^{r}=1\right\} \quad\left[\text { case }\left(\mathrm{E}_{n, u} / \mathrm{I}\right)\right], \\
A_{u}^{(t)} & :=\left\{w \in \mathbb{M}_{n} \mid w^{r \cdot 2^{t}}=1, w^{r \cdot 2^{t-1}} \neq 1\right\} \quad \text { for } 1 \leq t \leq s, \\
B_{u}^{(t)} & :=\left\{w \in A_{u}^{(t)} \mid w^{r \cdot 2^{t-1}}=-1\right\} \quad\left[\text { case }\left(\mathrm{E}_{n, u} / \mathrm{II}\right)\right], \\
A_{u} & :=\bigcup_{t=0}^{s} A_{u}^{(t)}=\left\{w \in \mathbb{M}_{n} \mid w^{u}=1\right\}, \\
B_{u} & :=\bigcup_{t=0}^{s} B_{u}^{(t)} \quad\left[\text { case }\left(\mathrm{E}_{n, u}\right)(\mathrm{I} \text { or } \mathrm{II})\right] . \\
C_{0} & :=\left\{w \in \mathbb{M}_{n} \mid \text { ord } w \text { odd }\right\}, \\
C_{1} & :=\left\{w \in \mathbb{M}_{n} \mid-1 \in\langle w\rangle\right\}, \\
C & :=C_{0} \cup C_{1} .
\end{aligned}
$$

Remarks

- $A_{u}^{0} \leq A_{u} \leq \mathbb{M}_{n}$ are subgroups, as are $A_{u}^{0} \leq C_{0} \leq \mathbb{M}_{n}$.
- $B_{u}^{(t)}=A_{u}^{(t)} \cap C$ for $t=0, \ldots, s$, since a cyclic group $\langle w\rangle$ can contain at most one square root of 1 in addition to 1 itself.
- Hence also $B_{u}=A_{u} \cap C$.
- B_{u} is the exceptional set of "bad" integers with $\left(\mathrm{E}_{n, u}\right)$ from Section 2.2 that flop with factoring n. The following proposition upper bounds by $\frac{1}{2}$ the probability of hitting an element of this set by pure chance. If we try k random candidate integers the probability of not factoring n is $<1 / 2^{k}$, hence extremely small even for moderate sizes of k

Proposition 4 Let n be odd and not a prime power. Let $u=r \cdot 2^{s}$ be a multiple of $\lambda(n)$ with odd r. Then

$$
\# B_{u} \leq \frac{1}{2} \cdot \varphi(n)
$$

Proof. By the following lemma C, and a forteriori B_{u}, is contained in a proper subgroup of \mathbb{M}_{n}. \diamond

Lemma 1 (Dixon, AMM 1984) Let $n \in \mathbb{N}_{3}$. Assume $\langle C\rangle=\mathbb{M}_{n}$. Then n is a prime power or even.

Proof. For this proof let $\lambda(n)=r \cdot 2^{s}$ with odd r. (Since $n \geq 3$, we have $s \geq 1$. The "old" meanings of r and s don't occur in this proof.) Consider the map

$$
h: \mathbb{M}_{n} \longrightarrow \mathbb{M}_{n}, \quad w \mapsto w^{r \cdot 2^{s-1}}
$$

This h is a group homomorphism with $h\left(\mathbb{M}_{n}\right) \subseteq\left\{v \in \mathbb{M}_{n} \mid v^{2}=1\right\}$ (group of square roots of $1 \bmod n)$. Since the $w \in C_{0}$ have odd order $h\left(C_{0}\right) \subseteq\{1\}$.

For $w \in C_{1}$ we have $h(w) \in\langle w\rangle$ and $h(w)^{2}=1$, hence $h(w)$ is one of the two roots of unity $\pm 1 \in\langle w\rangle$.

Together we have $h(C) \subseteq\{ \pm 1\}$.
If n is not a prime power (and a forteriori not a prime) there is a decomposition $n=p q$ into coprime factors $p, q \in \mathbb{N}_{2}$. Since $2^{s} \mid \lambda(n)=\operatorname{lcm}(\lambda(p), \lambda(q))$ we may assume $2^{s} \mid \lambda(p)$. The chinese remainder theorem provides a $w \in \mathbb{M}_{n}$ with $w \equiv 1(\bmod q)$ such that $w \bmod p$ has order 2^{s}. Then $h(w) \equiv 1(\bmod p)$, a forteriori $h(w) \neq 1$. Since $h(w) \equiv 1$ $(\bmod q)$ we also have $h(w) \neq-1$ - except when $q=2$.

Therefore if n is not even nor a prime power we have the contradiction $h\left(\mathbb{M}_{n}\right) \nsubseteq\{ \pm 1\}$.

This also completes the missing step of Section 2.2. Who knows the private RSA key is able to factor the module n.

