2.2 Computing the Key and Factorization

Question: How to compute the private $R S A$ exponent d, given the public exponent e and the module n ?

Answer: Each of the following tasks (A) - (D) is efficiently reducible to each of the other ones:
(A) Computing the private key d.
(B) Computing $\lambda(n)$ (CARMICHAEL function).
(C) Computing $\varphi(n)$ (Euler function).
(D) Factoring n.

Breaking RSA is the (possibly properly) easier task:
(E) Computing e-th roots in $\mathbb{Z} / n \mathbb{Z}$.

The "proof" (not an exact proof in the mathematical sense) follows the roadmap:

We always assume that n and the public exponent e are known, and $n=p_{1} \cdots p_{r}$ with different primes p_{1}, \ldots, p_{r}.

Clearly "A $\longrightarrow \mathrm{E}$ ": Taking an e-th root means raising to the d-th power. So if d is known, computing e-th roots is easy.

Note that the converse implication is unknown: Breaking RSA could be easier than factoring.
$" \mathrm{D} \longrightarrow \mathrm{C} ": \varphi(n)=\left(p_{1}-1\right) \cdots\left(p_{r}-1\right)$.
$" \mathrm{D} \longrightarrow \mathrm{B} ": \lambda(n)=\operatorname{kgV}\left(p_{1}-1, \ldots, p_{r}-1\right)$.
" $\mathrm{B} \longrightarrow \mathrm{A}$ ": Compute d by congruence division from $d e \equiv 1(\bmod \lambda(n))$.
"C \longrightarrow A": Since $\varphi(n)$ has exactly the same prime factors as $\lambda(n)$, also $\varphi(n)$ is coprime with e. From $d e \equiv 1(\bmod \varphi(n))$ we get a solution for d by congruence division. This might not be the "true" exponent, but works in the same way as private key since a forteriori $d e \equiv 1(\bmod \lambda(n))$.
"A $\longrightarrow \mathrm{D}$ " is significantly more involved. Moreover we only construct a probabilistic algorithm.

Preliminary Remarks

1. It suffices to decompose n into two proper factors.
(a) Let $n=n_{1} n_{2}$ be a proper decomposition, and assume for simplicity that $n_{1}=p_{1} \cdots p_{s}$ with $1<s<r$. Then
$\lambda\left(n_{1}\right)=\operatorname{kgV}\left(p_{1}-1, \ldots, p_{s}-1\right) \mid \operatorname{kgV}\left(p_{1}-1, \ldots, p_{r}-1\right)=\lambda(n)$,
thus also $d e \equiv 1\left(\bmod \lambda\left(n_{1}\right)\right)$. This reduces the problem to the analoguous ones for n_{1} and n_{2}.
(b) Since the number of prime factors of n is at $\operatorname{most} \log _{2}(n)$ the recursive reduction suggested by (a) is efficient.
2. How can a residue class $w \in \mathbb{Z} / n \mathbb{Z}$ help with factoring n ?
(a) Finding a $w \in[1 \ldots n-1]$ with $\operatorname{gcd}(w, n)>1$ decomposes n since $\operatorname{gcd}(w, n)$ is a proper divisor of n.
(b) Finding a $w \in[2 \ldots n-2]$ with $w^{2} \equiv 1(\bmod n)$ (that is a nontrivial square root of 1 in $\mathbb{Z} / n \mathbb{Z})$ likewise decomposes n :
Since $n \mid w^{2}-1=(w+1)(w-1)$ and $n \nmid w \pm 1$ we have $\operatorname{gcd}(n, w+1)>1$, and this decomposes n by (a).

Now let (d, e) be a pair of RSA exponents. Then also $u:=e d-1=k \cdot \lambda(n)$ is known (with unknown k and $\lambda(n)$). Since $\lambda(n)$ is even we may write

$$
u=r \cdot 2^{s} \quad \text { with } s \geq 1 \text { and } r \text { odd. }
$$

If we choose a random $w \in[1 \ldots n-1]$, then we have to deal with two possibilities:

- $\operatorname{gcd}(w, n)>1$ - then n is decomposed.
- $\operatorname{gcd}(w, n)=1 —$ then $w^{r 2^{s}} \equiv 1(\bmod n)$.

In the second case we efficiently find the minimal $t \geq 0$ with

$$
w^{r 2^{t}} \equiv 1 \quad(\bmod n)
$$

Again we distinguish two cases:

- $t=0$ - bad luck, choose another w.
- $t>0$ - then $w^{r 2^{t-1}}$ is a square root $\neq 1$ of 1 in $\mathbb{Z} / n \mathbb{Z}$.

In the second case we distiguish:

- $w^{r 2^{t-1}} \equiv-1(\bmod n)$ —bad luck, choose another w.
- $w^{r 2^{t-1}} \not \equiv-1(\bmod n)$-then n is decomposed by preliminary remark 2.

Thus every choice of $w \in[1 \ldots n-1]$ has one of four possible outcomes, two of them decompose n, and the other two flop. Denote the last two events by

$$
\begin{array}{rc}
\left(\mathrm{E}_{n, u}(w) / \mathrm{I}\right) & w^{r} \equiv 1 \quad(\bmod n) \\
\left(\mathrm{E}_{n, u}(w) / \mathrm{II}\right) & w^{r 2^{t-1}} \equiv-1 \quad(\bmod n) \quad \text { for a } t \text { with } 1 \leq t \leq s
\end{array}
$$

Altogether this yields a tree-like structure:

$$
\begin{aligned}
& w \in[1 \ldots n-1] \longrightarrow \\
& \quad \operatorname{gcd}(w, n)>1 \longrightarrow n \text { decomposed SUCCESS } \\
& w \in \mathbb{M}_{n} \longrightarrow \\
& w^{r} \equiv 1(\bmod n) \longrightarrow\left(\mathrm{E}_{n, u}(w) / \mathrm{I}\right) \text { FLOP } \\
& w^{r} \neq 1(\bmod n) \longrightarrow \\
& \quad w^{r 2^{t-1}} \equiv-1(\bmod n) \longrightarrow\left(\mathrm{E}_{n, u}(w) / \mathrm{II}\right) \text { FLOP } \\
& w^{r 2^{t-1}} \not \equiv-1(\bmod n) \longrightarrow n \text { decomposed SUCCESS }
\end{aligned}
$$

Thus our procedure decomposes n "with high probability" if there are only "few" "bad" integers w with $\left(\mathrm{E}_{n, u}(w) / \mathrm{I}, \mathrm{II}\right)$. The next section will provide an upper bound for their number.

