2.2 Computing the Key and Factorization

- **Question:** How to compute the private RSA exponent d, given the public exponent e and the module n?
- **Answer:** Each of the following tasks (A) (D) is efficiently reducible to each of the other ones:
- (A) Computing the private key d.
- (B) Computing $\lambda(n)$ (CARMICHAEL function).
- (C) Computing $\varphi(n)$ (EULER function).
- (D) Factoring n.

Breaking RSA is the (possibly properly) easier task:

(E) Computing *e*-th roots in $\mathbb{Z}/n\mathbb{Z}$.

The "proof" (not an exact proof in the mathematical sense) follows the roadmap:

We always assume that n and the public exponent e are known, and $n = p_1 \cdots p_r$ with different primes p_1, \ldots, p_r .

Clearly "A \longrightarrow E": Taking an *e*-th root means raising to the *d*-th power. So if *d* is known, computing *e*-th roots is easy.

Note that the converse implication is unknown: Breaking RSA could be easier than factoring.

"D
$$\longrightarrow$$
 C": $\varphi(n) = (p_1 - 1) \cdots (p_r - 1)$.

"D
$$\longrightarrow$$
 B": $\lambda(n) = \text{kgV}(p_1 - 1, \dots, p_r - 1)$

"B \longrightarrow A": Compute d by congruence division from $de \equiv 1 \pmod{\lambda(n)}$.

"C \longrightarrow A": Since $\varphi(n)$ has exactly the same prime factors as $\lambda(n)$, also $\varphi(n)$ is coprime with e. From $de \equiv 1 \pmod{\varphi(n)}$ we get a solution for d by congruence division. This might not be the "true" exponent, but works in the same way as private key since a forteriori $de \equiv 1 \pmod{\lambda(n)}$.

"A \longrightarrow D" is significantly more involved. Moreover we only construct a probabilistic algorithm.

Preliminary Remarks

- 1. It suffices to decompose n into two proper factors.
 - (a) Let $n = n_1 n_2$ be a proper decomposition, and assume for simplicity that $n_1 = p_1 \cdots p_s$ with 1 < s < r. Then

$$\lambda(n_1) = \text{kgV}(p_1 - 1, \dots, p_s - 1) | \text{kgV}(p_1 - 1, \dots, p_r - 1) = \lambda(n),$$

thus also $de \equiv 1 \pmod{\lambda(n_1)}$. This reduces the problem to the analoguous ones for n_1 and n_2 .

- (b) Since the number of prime factors of n is at most $\log_2(n)$ the recursive reduction suggested by (a) is efficient.
- 2. How can a residue class $w \in \mathbb{Z}/n\mathbb{Z}$ help with factoring n?
 - (a) Finding a $w \in [1 \dots n-1]$ with gcd(w, n) > 1 decomposes n since gcd(w, n) is a proper divisor of n.
 - (b) Finding a $w \in [2...n-2]$ with $w^2 \equiv 1 \pmod{n}$ (that is a nontrivial square root of 1 in $\mathbb{Z}/n\mathbb{Z}$) likewise decomposes n: Since $n|w^2 - 1 = (w+1)(w-1)$ and $n \nmid w \pm 1$ we have gcd(n, w+1) > 1, and this decomposes n by (a).

Now let (d, e) be a pair of RSA exponents. Then also $u := ed - 1 = k \cdot \lambda(n)$ is known (with unknown k and $\lambda(n)$). Since $\lambda(n)$ is even we may write

$$u = r \cdot 2^s$$
 with $s \ge 1$ and r odd.

If we choose a random $w \in [1 \dots n - 1]$, then we have to deal with two possibilities:

- gcd(w, n) > 1—then n is decomposed.
- gcd(w, n) = 1—then $w^{r2^s} \equiv 1 \pmod{n}$.

In the second case we efficiently find the minimal $t \ge 0$ with

$$w^{r2^{\iota}} \equiv 1 \pmod{n}.$$

Again we distinguish two cases:

- t = 0—bad luck, choose another w.
- t > 0—then $w^{r^{2^{t-1}}}$ is a square root $\neq 1$ of 1 in $\mathbb{Z}/n\mathbb{Z}$.

In the second case we distiguish:

• $w^{r2^{t-1}} \equiv -1 \pmod{n}$ —bad luck, choose another w.

• $w^{r2^{t-1}} \not\equiv -1 \pmod{n}$ —then *n* is decomposed by preliminary remark 2.

Thus every choice of $w \in [1 \dots n - 1]$ has one of four possible outcomes, two of them decompose n, and the other two flop. Denote the last two events by

$$\begin{split} & (\mathrm{E}_{n,u}(w)/\mathrm{I}) \qquad w^r \equiv 1 \pmod{n} \\ & (\mathrm{E}_{n,u}(w)/\mathrm{II}) \quad w^{r2^{t-1}} \equiv -1 \pmod{n} \quad \text{for a } t \text{ with } 1 \leq t \leq s. \end{split}$$

Altogether this yields a tree-like structure:

$$\begin{split} w &\in [1 \dots n-1] \longrightarrow \\ \gcd(w,n) > 1 \longrightarrow n \text{ decomposed SUCCESS} \\ w &\in \mathbb{M}_n \longrightarrow \\ w^r &\equiv 1 \pmod{n} \longrightarrow (\mathcal{E}_{n,u}(w)/\mathcal{I}) \text{ FLOP} \\ w^r &\not\equiv 1 \pmod{n} \longrightarrow \\ w^{r2^{t-1}} &\equiv -1 \pmod{n} \longrightarrow (\mathcal{E}_{n,u}(w)/\mathcal{II}) \text{ FLOP} \\ w^{r2^{t-1}} &\not\equiv -1 \pmod{n} \longrightarrow n \text{ decomposed SUCCESS} \end{split}$$

Thus our procedure decomposes n "with high probability" if there are only "few" "bad" integers w with ($\mathbf{E}_{n,u}(w)/\mathbf{I},\mathbf{II}$). The next section will provide an upper bound for their number.