
2.2 Computing the Key and Factorization

Question: How to compute the private RSA exponent d, given the public

exponent e and the module n?

Answer: Each of the following tasks (A) – (D) is e�ciently reducible to
each of the other ones:

(A) Computing the private key d.

(B) Computing �(n) (Carmichael function).

(C) Computing '(n) (Euler function).

(D) Factoring n.

Breaking RSA is the (possibly properly) easier task:

(E) Computing e-th roots in Z/nZ.

The “proof” (not an exact proof in the mathematical sense) follows the
roadmap:

C -A

B

E

D

66
-

-
�
� 

We always assume that n and the public exponent e are known, and
n = p1 · · · pr with di↵erent primes p1, . . . , pr.

Clearly “A �! E”: Taking an e-th root means raising to the d-th power.
So if d is known, computing e-th roots is easy.

Note that the converse implication is unknown: Breaking RSA could be

easier than factoring.

“D �! C”: '(n) = (p1 � 1) · · · (pr � 1).

“D �! B”: �(n) = kgV(p1 � 1, . . . , pr � 1).

“B �! A”: Compute d by congruence division from de ⌘ 1 (mod �(n)).

“C �! A”: Since '(n) has exactly the same prime factors as �(n), also
'(n) is coprime with e. From de ⌘ 1 (mod '(n)) we get a solution for d by
congruence division. This might not be the “true” exponent, but works in
the same way as private key since a forteriori de ⌘ 1 (mod �(n)).

“A �! D” is significantly more involved. Moreover we only construct a
probabilistic algorithm.

16



Preliminary Remarks

1. It su�ces to decompose n into two proper factors.

(a) Let n = n1n2 be a proper decomposition, and assume for sim-
plicity that n1 = p1 · · · ps with 1 < s < r. Then

�(n1) = kgV(p1 � 1, . . . , ps � 1)| kgV(p1 � 1, . . . , pr � 1) = �(n),

thus also de ⌘ 1 (mod �(n1)). This reduces the problem to the
analoguous ones for n1 and n2.

(b) Since the number of prime factors of n is at most log2(n) the
recursive reduction suggested by (a) is e�cient.

2. How can a residue class w 2 Z/nZ help with factoring n?

(a) Finding a w 2 [1 . . . n�1] with gcd(w, n) > 1 decomposes n since
gcd(w, n) is a proper divisor of n.

(b) Finding a w 2 [2 . . . n � 2] with w2
⌘ 1 (mod n) (that is a non-

trivial square root of 1 in Z/nZ) likewise decomposes n:

Since n|w2
� 1 = (w + 1)(w � 1) and n - w ± 1 we have

gcd(n,w + 1) > 1, and this decomposes n by (a).

Now let (d, e) be a pair of RSA exponents. Then also u := ed�1 = k·�(n)
is known (with unknown k and �(n)). Since �(n) is even we may write

u = r · 2s with s � 1 and r odd.

If we choose a random w 2 [1 . . . n � 1], then we have to deal with two
possibilities:

• gcd(w, n) > 1—then n is decomposed.

• gcd(w, n) = 1—then wr2s
⌘ 1 (mod n).

In the second case we e�ciently find the minimal t � 0 with

wr2t
⌘ 1 (mod n).

Again we distinguish two cases:

• t = 0—bad luck, choose another w.

• t > 0—then wr2t�1
is a square root 6= 1 of 1 in Z/nZ.

In the second case we distiguish:

• wr2t�1
⌘ �1 (mod n)—bad luck, choose another w.

17



• wr2t�1
/⌘ �1 (mod n)—then n is decomposed by preliminary remark 2.

Thus every choice of w 2 [1 . . . n� 1] has one of four possible outcomes,
two of them decompose n, and the other two flop. Denote the last two events
by

(En,u(w)/I) wr
⌘ 1 (mod n)

(En,u(w)/II) wr2t�1
⌘ �1 (mod n) for a t with 1  t  s.

Altogether this yields a tree-like structure:

w 2 [1 . . . n� 1] �!
gcd(w, n) > 1 �! n decomposed SUCCESS
w 2 Mn �!

wr
⌘ 1 (mod n) �! (En,u(w)/I) FLOP

wr/⌘ 1 (mod n) �!

wr2t�1
⌘ �1 (mod n) �! (En,u(w)/II) FLOP

wr2t�1
/⌘ �1 (mod n) �! n decomposed SUCCESS

Thus our procedure decomposes n “with high probability” if there are
only “few” “bad” integers w with (En,u(w)/I,II). The next section will pro-
vide an upper bound for their number.

18


