
1.3 The Carmichael Function

We assume n � 2.
The Carmichael function is defined as the exponent of the multiplica-

tive group Mn = (Z/nZ)⇥:

�(n) := exp(Mn) = min{s � 1 | as ⌘ 1 (mod n) for all a 2 Mn};

in other words, �(n) is the maximum of the orders of the elements of Mn.

Remarks

1. Euler’s theorem may be expressed as �(n)|'(n) (“exponent divides
order”). A common way of expressing it is

a'(n) ⌘ 1 (mod n) for all a 2 Z with gcd(a, n) = 1.

Both versions follow immediately from the definition.

2. If p is prime, then Mp is cyclic—see Proposition 2 below—, hence

�(p) = '(p) = p� 1.

By the chinese remainder theorem we have Mmn
⇠= Mm ⇥Mn, hence by

Lemma 22 of Appendix A.10:

Corollary 1 For coprime m,n 2 N2

�(mn) = lcm(�(m),�(n)).

Corollary 2 If n = pe11 · · · perr is the prime decomposition of n 2 N2, then

�(n) = lcm(�(pe11 ), . . . ,�(perr )).

Remarks

3. The Carmichael function for powers of 2 (proof as exercise or in
Appendix A.1):

�(2) = 1, �(4) = 2, �(2e) = 2e�2 for e � 3.

4. The Carmichael function for powers of odd primes (proof as exer-
cise or in Appendix A.3):

�(pe) = '(pe) = pe�1
· (p� 1) for p prime � 3.

To prove the statement in Remark 2 we have to show that the multi-
plicative group mod p is indeed cyclic. We prove a somewhat more general
standard result from algebra:
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Proposition 2 Let K be a field and G  K⇥
be a finite subgroup of order

#G = n. Then G is cyclic and consists exactly of the n-th roots of unity in

K.

Proof. For a 2 G we have an = 1, hence G is contained in the set of zeroes
of the polynomial Tn

� 1 2 K[T ]. Thus K has exactly n di↵erent n-th roots
of unity, and G contains all of them.

Now let m be the exponent of G, in particular m  n. Lemma 24 of
Appendix A.10 yields that all a 2 G are even m-th roots of unity. Hence
n  m, so n = m, and G has an element of order n. 3
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