1.3 The Carmichael Function

We assume $n \geq 2$.
The Carmichael function is defined as the exponent of the multiplicative group $\mathbb{M}_{n}=(\mathbb{Z} / n \mathbb{Z})^{\times}$:

$$
\lambda(n):=\exp \left(\mathbb{M}_{n}\right)=\min \left\{s \geq 1 \mid a^{s} \equiv 1 \quad(\bmod n) \quad \text { for all } a \in \mathbb{M}_{n}\right\} ;
$$

in other words, $\lambda(n)$ is the maximum of the orders of the elements of \mathbb{M}_{n}.

Remarks

1. Euler's theorem may be expressed as $\lambda(n) \mid \varphi(n)$ ("exponent divides order"). A common way of expressing it is

$$
a^{\varphi(n)} \equiv 1 \quad(\bmod n) \quad \text { for all } a \in \mathbb{Z} \text { with } \operatorname{gcd}(a, n)=1 .
$$

Both versions follow immediately from the definition.
2. If p is prime, then \mathbb{M}_{p} is cyclic-see Proposition 2 below-, hence

$$
\lambda(p)=\varphi(p)=p-1 .
$$

By the chinese remainder theorem we have $\mathbb{M}_{m n} \cong \mathbb{M}_{m} \times \mathbb{M}_{n}$, hence by Lemma 22 of Appendix A. 10

Corollary 1 For coprime $m, n \in \mathbb{N}_{2}$

$$
\lambda(m n)=\operatorname{lcm}(\lambda(m), \lambda(n)) .
$$

Corollary 2 If $n=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$ is the prime decomposition of $n \in \mathbb{N}_{2}$, then

$$
\lambda(n)=\operatorname{lcm}\left(\lambda\left(p_{1}^{e_{1}}\right), \ldots, \lambda\left(p_{r}^{e_{r}}\right)\right) .
$$

Remarks

3. The Carmichael function for powers of 2 (proof as exercise or in Appendix A.1):

$$
\lambda(2)=1, \quad \lambda(4)=2, \quad \lambda\left(2^{e}\right)=2^{e-2} \quad \text { for } e \geq 3 .
$$

4. The Carmichael function for powers of odd primes (proof as exercise or in Appendix A.3):

$$
\lambda\left(p^{e}\right)=\varphi\left(p^{e}\right)=p^{e-1} \cdot(p-1) \quad \text { for } p \text { prime } \geq 3 .
$$

To prove the statement in Remark 2 we have to show that the multiplicative group $\bmod p$ is indeed cyclic. We prove a somewhat more general standard result from algebra:

Proposition 2 Let K be a field and $G \leq K^{\times}$be a finite subgroup of order $\# G=n$. Then G is cyclic and consists exactly of the n-th roots of unity in K.

Proof. For $a \in G$ we have $a^{n}=1$, hence G is contained in the set of zeroes of the polynomial $T^{n}-1 \in K[T]$. Thus K has exactly n different n-th roots of unity, and G contains all of them.

Now let m be the exponent of G, in particular $m \leq n$. Lemma 24 of Appendix A.10 yields that all $a \in G$ are even m-th roots of unity. Hence $n \leq m$, so $n=m$, and G has an element of order n.

