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I’ll give a survey on the known results on finite generation of invariants
for nonreductive groups, and some conjectures.

You know that Hilbert’s 14th problem is solved for the invariants of
reductive groups; see [12] for a survey. So the general case reduces to the
case of unipotent groups. But in this case there are only a few results, some
negative and some positive.

I assume that k is an infinite field, say the complex numbers, but in most
instances an arbitrary ring would do it.

∗Appeared in S. S. Koh (Ed.): Invariant Theory, Springer Lecture Notes in Mathemat-
ics 1278 (1987), 8–17 — Footnotes added after publication
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1 BASIC RESULTS

1.1 Nagata’s counterexample (1958)

Let U be a subgroup of the n-fold product Gn
a of the additive

group, canonically embedded in GL2n

U ⊆

1 ∗
0 1

. . .

1 ∗
0 1

⊆ GL2n,

such that U is given by 3 ‘general’ linear relations. Then k[X]U is
not finitely generated, where X = (X1, ..., X2n), if n is a square =
r2 ≥ 16 (at least if k contains enough transcendental elements).

Cf. [14]. All known counterexamples derive from this one!
Chudnovsky claims, but apparently never published a proof, that n ≥ 10

suffices. The argument in [1] is not convincing, but there is more evidence
in [2] and [15]. For the proof (with n ≥ 10) one needs the following result:

There is a set S of n points in the affine plane A2 with the
property: Each nonzero polynomial f ∈ k[Y1, Y2] that vanishes of
order at least t in each p ∈ S has degree d > t ·

√
n (t any integer

≥ 1).

Let ωt(S) be the minimum of the degrees of such polynomials; then the
assertion is ωt(S) > t ·

√
n. Now the quotient ωt(S)/t decreases to a limit

Ω(S) when t goes to infinity; Ω(S) is called the singular degree of S. In
general Ω(S) ≤

√
n. Chudnovsky’s claim is:

If S is generic, then Ω(S) =
√

n.

This gives ωt(S) ≥ t ·
√

n. However, if n is not a square, we have the desired
strict inequality because ωt(S) is an integer. And in the case where n is a
square, we can take Nagata’s argument.

1.2 Popov’s theorem (1979)

Popov’s theorem is the converse of the invariant theorem for reductive
groups. So:
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For an affine algebraic group G the following statements are
equivalent:

(i) G is reductive.

(ii) Whenever G acts rationally on a finitely generated algebra
A, then the invariant algebra AG is finitely generated.

See [19]. This means that for a nonreductive group there can’t be a general
positive answer.

1.3 Zariski’s result (1954)

A positive result goes back to Zariski:

If a group G acts on a finitely generated algebra A such that the
invariant algebra AG has transcendence degree at most 2, then
AG is finitely generated.

Cf. [14]. A useful geometric version is:

COROLLARY 1 If an affine algebraic group G acts on an affine variety
X and there is an orbit of codimension ≤ 2, then k[X]G is finitely generated.

Proof. Assume (without loss of generality) that X is normal. Then

trdeg k[X]G ≤ dim X −max{dim G · x | x ∈ X} ≤ 2.

COROLLARY 2 If trdeg A ≤ 3, then AG is finitely generated.

Proof. Assume that G acts effectively. If G is finite, we are done. Else
trdeg AG ≤ 2.�

For linear actions we can do one more step:

COROLLARY 3 If G acts linearly on the polynomial algebra k[X] =
k[X1, X2, X3, X4], then k[X]G is finitely generated.1

Proof. Assume that G acts effectively. Without changing k[X]G we may
assume that G is Zariski-closed in GL4. If G is finite, we are done. Else
dim G ≥ 1 and G is reductive or has a 1-dimensional unipotent normal
subgroup N . The algebra A = k[X]N is finitely generated by Weitzenböck’s
theorem (see below 2.1b), trdeg A ≤ 3, k[X]G = AG. �

1Only if char k = 0, see footnote 2
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1.4 Grosshans’s principle (1973)

Some other positive results derive from Grosshans’s principle [6]:

Let an algebraic group G act rationally on a k-algebra A, and H
be a closed subgroup of G. Then

AH ∼= (k[G]H ⊗A)G.

For the proof let G×H act on k[G]⊗A as follows: G acts diagonally by left
translation and H acts on k[G] by right translation. Then take the invariants
in the two possible different ways (using an obvious isomorphism).�

If G is reductive and A finitely generated, this reduces the question,
whether AH is finitely generated, to the one algebra k[G]H that is also the
global coordinate algebra of the homogeneous space G/H.

2 APPLICATIONS OF THE GROSSHANS
PRINCIPLE

For ring theoretic properties of AH it may be useful to look at the isomor-
phism of 1.4. For example an unpublished result of Boutot is:

Let char k = 0 and G reductive, acting on a finitely generated
k-algebra B with only rational singularities. Then BG also only
has rational singularities; in particular BG is Cohen-Macaulay.

The question whether k[G]H has rational singularities, seems to be rather
difficult, and I don’t dare making a conjecture; but there are some known
examples. If that holds, and A only has rational singularities, then also
k[G]H ⊗A and hence AH only have rational singularities.

The Grosshans principle has several important special cases that were
known earlier, but derived with more pains:

1.) Let G = SL2 and H be the maximal unipotent subgroup consisting of
upper triangular matrices. Then k[G]H is the coordinate algebra k[V ] of the
affine plane V = A2, because H is the stabilizer Gx of the point x = (1, 0)
whose orbit G · x = A2 − {0} is dense and isomorphic to G/H and has
a boundary of codimension 2. Here are two interesting applications of this
situation:
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a) Let A be the coordinate algebra k[Rd] of the vector space Rd of binary
forms of degree d. Then we get the isomorphism

k[V ⊕Rd]G
∼−→ k[Rd]H

between ‘covariants’ and ‘seminvariants’, given by evaluating a covariant F
at the point x,

F 7−→ F ((1, 0),−),

where the image is the ‘Leitglied’ (leading term) of the covariant. This result
goes back to Roberts (around 1870).

b) Let char k = 0 and A be the coordinate algebra k[W ] of an arbitrary
rational (finite dimensional) Ga-module W . Then the representation of Ga

extends to SL2 via the embedding by the Jordan normal form.

H ⊆ SL2

Ga GL(W )

?

∼=

-

�
�

�
�

�
�

�3

Therefore the invariant algebra k[W ]H ∼= k[V ⊕W ]G is finitely generated.
This is Seshadri’s proof [20] of Weitzenböck’s theorem (1932). Fauntleroy
recently found a proof of this theorem in positive characteristic, see these
conference proceedings or [5]2. The proof is a skillful elaboration of the given
one in characteristic 0 but, strictly speeking, doesn’t depend on Grosshans’s
principle.

2.) Somewhat more generally we can take G reductive and H, a maximal
unipotent subgroup of G. The principle for this case was observed by several
people, for the first time (in characteristic 0) by Hadžiev [10], see also [6]
and [21].

3.) Now let G = GLn act on the polynomial ring

k[X] = k[Xij | 1 ≤ i, j ≤ n]

in a matrix of indeterminates by left translation. Let H be a subgroup of
SLn such that k[X]H is finitely generated. Then for any affine algebra A on

2This proof had a gap. Weitzenböck’s theorem is still unproved in positive characteris-
tic. In particular Corollary 3 is proved only in characteristic 0.
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which GLn (or a reductive group G between H and GLn) acts rationally,
the invariant algebra AH is finitely generated. This is a qualitative version
of the old principle: ‘If you know the invariants of n vectors, you know all
invariants.’ (Capelli 1887) – The n vectors are the columns of the n-by-n
matrix X.

The proof is two lines:

AH ∼= (k[GLn]H ⊗A)GLn ,

(I interchanged left and right translation, but that doesn’t matter) and

k[GLn]H = k[X][1/ det]H = k[X]H [1/ det]

because H ≤ SLn and det is SLn-invariant.�

Note that we need an action of a bigger reductive group G containing H
– of course this is a disadvantage, but in view of Nagata’s counterexample
it even looks surprisingly good.

3 GROSSHANS SUBGROUPS

The following seems to be a good substitute of Hilbert’s 14th problem:

Find the Grosshans subgroups of GLn or more generally of a
reductive group G.

The formal definition of a Grosshans subgroup H of an affine algebraic
group is: H is closed, G/H is quasiaffine, k[G/H] is finitely generated. The
technical condition ‘G/H quasiaffine’ is automatic if H is unipotent. Let me
give 3 examples:

a) By Hadžievs result the maximal unipotent subgroups are Grosshans,
even if G is not reductive.

b) The existence of non-Grosshans subgroups follows from Nagata’s
counterexample: There must be a situation

GLn ≥ U ≥ V , U and V unipotent with dim U/V = 1,

such that U is Grosshans and V is not.
c) Generic stabilizers often are Grosshans subgroups. The following the-

orem generalizes a result by Grosshans [7]. Since some people recently were
interested in it, I give the proof here.
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THEOREM 1 Let X be a factorial affine variety and G, an affine alge-
braic group acting on X. Then X has a dense open subset U such that the
stabilizer Gx is a Grosshans subgroup of G for all x ∈ U .

Remark. Instead of ‘factorial’ the following condition suffices: X is nor-
mal and each G-invariant divisor on X has finite order in the divisor class
group Cl(X), cf. [18].

Proof. I may assume G connected. There is a function f ∈ k[X] such that
the principal open subset Xf is G-stable and k(X)G is the quotient field of
k[Xf ]G; this is well-known, cf. [13]. Choose functions f1, . . . , fn ∈ k[Xf ]G

that generate the field k(X)G. Let R be the algebra generated by f1, . . . , fn

and Y be an affine model of R. Then k(Y ) = k(X)G, and the induced
morphism π : Xf −→ Y is dominant.

Now let m = max{dim G · x | x ∈ X} be the maximal orbit dimension.
The set Z = {x ∈ Xf | dim G ·x = m} is G-stable and open dense in X, and
dim Y = dim X−m. Since Xf is factorial, Xf −Z = V (h)∪A for a function
h ∈ k[Xf ] with dim A ≤ dim X − 2. Clearly Xfh is G-stable. Restricting π
gives a dominant morphism σ : Xfh −→ Y . The fibres of σ are G-stable,
and

σ−1σx = (σ−1σx ∩ Z) ∪ (σ−1σx ∩A) for all x ∈ Z.

There is a dense open part W ⊆ Z such that σ−1y has pure dimension m
for all y ∈ W . Shrinking W we may assume that

dim(σ−1y ∩A) ≤ m− 2 for all y ∈ W.

Now U = Z ∩ σ−1W is G-stable and open dense in X. Let x ∈ U . Then the
closure G · x in Xfh is an irreducible component of σ−1σx – compare the
dimensions. In G · x−G · x there is no z ∈ Z since there is no room for the
m-dimensional orbit G · z. Thus G · x−G · x ⊆ σ−1σx ∩A, and

dim(G · x−G · x) ≤ dim(σ−1σx ∩A) ≤ m− 2 ≤ dim G · x− 2.

Therefore Gx is a Grosshans subgroup of G.�

There are some natural conjectures:

Conjecture 1 (m) Each m-dimensional unipotent subgroup is Grosshans.

This conjecture is false when m = r2 − 3 and r ≥ 4, and probably false
when m ≥ 7. Conjecture 1 (1) is true by Weitzenböck’s theorem, and I guess
this is the only positive case! Since nobody seems to have an approach to
this problem, I make another conjecture:
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Conjecture 2 Each regular unipotent subgroup of a reductive group is
Grosshans.

‘Regular’ means ‘normalized by a maximal torus’, or, more concretely,
given by a closed subset of the root system. For GLn it means that the
subgroup is defined by relations of the type Xij = 0. The following example
shows what this means:

1 0 ∗ 0
1 0 ∗

1 0
1

= {


1 0 a 0

1 0 b
1 0

1

 | a, b ∈ k arbitrary}.

Such a pattern of zeroes and stars above the diagonal gives a subgroup of
GLn, if and only if it is the incidence matrix of a strict ordering of the set
{1, . . . , n}.

Conjecture 2 is true for the unipotent radicals H = Ru(P ) of the
parabolic subgroups P . This was shown by Hochschild and Mostow 1973
(for characteristic 0) [11], and by Grosshans 1983 (for the general case) [8].
Grosshans recently extended this result in several ways [9].

4 INVARIANT MINORS

My own contribution in [16], [17] is a large class of examples for GLn – but
unfortunately I have no general proof of conjecture 2, not even for GLn. My
approach is the explicit determination of k[X]H , where X = (Xij) is the
n-by-n matrix of indeterminates and H ≤ GLn regular unipotent. It looks
promising because a lot of invariants are obvious: Consider a minor∣∣∣∣∣∣∣

Xi1j1 . . . Xi1jm

...
...

Ximj1 . . . Ximjm

∣∣∣∣∣∣∣ ,

shortly represented by the row (i1 . . . im | j1 . . . jm). When is it invariant? For
the group at the end of section 3 we have

1 0 a 0
1 0 b

1 0
1

 ·


X11 . . .
X21 . . .
X31 . . .
X41 . . .

 =


X11 + aX31 . . .
X21 + bX41 . . .

X31 . . .
X41 . . .

 .

So our minor is invariant if and only if the following is true:
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• If it contains the row index 1, then it also contains 3,

• if it contains the row index 2, then it also contains 4.

This is because then H acts by elementary row operations. In general we
read the condition off the constellation of stars:

• If the box representing the group contains stars at positions l1, . . . , lm
in the i-th row, then the minor has to contain the row indices l1, . . . , lm
along with i.

So we know the invariant minors. I would like to prove:

Conjecture 3 The invariant algebra k[X]H is generated by the (finitely
many) invariant minors.

This would imply Conjecture 2 for GLn. In fact I can prove a much
stronger result, but only for a large class of unipotent subgroups that how-
ever contains the unipotent radicals of the parabolics as simplest special
cases. Since the proof (and even the statement of the result) uses some com-
plicated combinatorial methods, I’ll give only a very simple example that,
of course, is not new.

Take n = 2 and H, the maximal unipotent subgroup consisting of upper
triangular matrices. The invariant minors are:

(12 | 12) = det, (2 | 1) = X21, (2 | 2) = X22,

because, if we have the row index 1 we also must have the row index 2, so the
minor is the full determinant. Now k[X][1/X22] = R[1/X22][X12], where R is
the algebra generated by the invariant minors; H acts trivially on R[1/X22]
and maps X12 to X12 + sX22 with s ∈ k arbitrary. Therefore

k[X][1/X22]H = R[1/X22].

This kind of argument goes through for general n: There is a product ε
of invariant minors such that k[X][1/ε]H = R[1/ε]. This means that the
analogue of Conjecture 3 for rational functions is true. However, as it is
often the case, it is a major problem to get rid of this denominator.

Let me continue the example. We have

k[X]H = k[X] ∩R[1/X22] ⊇ R.

To get equality I have to show: If f ∈ k[X] and X22f ∈ R, then f ∈ R –
by induction I may assume r = 1. This is the hard core of the proof, that
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however is no problem for this example. Write a product of minors in the
form of a bitableau, say 

1 2
1 2
1
1
2

∣∣∣∣∣∣∣∣∣∣
1 2
1 2
1
2
1

 .

These bitableaux span k[X]. When the columns increase, we have a ‘stan-
dard’ bitableau. The given one is not standard because of its last entry.
The straightening law by Rota and others, see [3] for example, says (for the
general case of n-by-n matrices):

The standard bitableaux are a basis of k[X].

This generalizes some classical determinant identities. In the example we
have (

1
2

∣∣∣∣ 2
1

)
=

(
1
2

∣∣∣∣ 1
2

)
− (12 | 12);

in a similar way each bitableau obviously is a linear combination of standard
ones.

Now call a bitableau ‘admissible’, if each of its rows represents an invari-
ant minor. Then R is spanned by the admissible bitableaux. In our example
the admissible standard bitableaux are a basis of R: ‘Admissible’ means that
there is no row (1 | . . .); but then the bitableau is already standard.

Now take f ∈ k[X] such that X22f ∈ R, and write it as a linear combi-
nation of standard bitableaux:

f = c1T1 + · · ·+ crTr (with nonzero coefficients ci).

X22f =
r∑

i=1

ciTiX22 ∈ R

is a linear combination of standard bitableaux TiX22. These have to be
admissible, so have their parts Ti. Therefore f ∈ R.

In the general case, under suitable conditions on H, the proof goes the
same way except that the minors of an n-by-n matrix behave a lot more
complicated. This is where the nontrivial combinatorial techniques come in.
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Finally let me note that conjecture 3 is true in the cases

• dim H ≤ 3,

• n ≤ 4.

The first examples where the Grosshans property is unknown are

1 0 ∗ ∗ 0
1 0 ∗ ∗

1 0 0
1 0

1

and

1 0 0 ∗ 0
1 0 ∗ ∗

1 0 ∗
1 0

1

and this are the only exceptions for n = 5.
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Delange-Pisot-Poitou 1980–81. Birkhäuser, Prog. Math. 22 (1982),
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